473 research outputs found

    Accessing dark states optically through excitation-ferrying states

    Full text link
    The efficiency of solar energy harvesting systems is largely determined by their ability to transfer excitations from the antenna to the energy trapping center before recombination. Dark state protection, achieved by coherent coupling between subunits in the antenna structure, can significantly reduce radiative recombination and enhance the efficiency of energy trapping. Because the dark states cannot be populated by optical transitions from the ground state, they are usually accessed through phononic relaxation from the bright states. In this study, we explore a novel way of connecting the dark states and the bright states via optical transitions. In a ring-like chromophore system inspired by natural photosynthetic antennae, the single-excitation bright state can be optically connected to the lowest energy single-excitation dark state through certain double-excitation states. We call such double-excitation states the ferry states and show that they are the result of accidental degeneracy between two categories of double-excitation states. We then mathematically prove that the ferry states are only available when N, the number of subunits on the ring, satisfies N=4l+2 (l being an integer). Numerical calculations confirm that the ferry states enhance the energy transfer power of our model, showing a significant energy transfer power spike at N=6 compared with smaller N values, even without phononic relaxation. The proposed mathematical theory for the ferry states is not restricted to this one particular system or numerical model. In fact, it is potentially applicable to any coherent optical system that adopts a ring-shaped chromophore arrangement. Beyond the ideal case, the ferry state mechanism also demonstrates robustness under weak phononic dissipation, weak site energy disorder, and large coupling strength disorder

    Efficient Up-Conversion in CsPbBr3 Nanocrystals via Phonon-Driven Exciton-Polaron Formation

    Full text link
    Lead halide perovskite nanocrystals demonstrate efficient up-conversion, although the precise mechanism remains a subject of active research. This study utilizes steady-state and time-resolved spectroscopy methods to unravel the mechanism driving the up-conversion process in CsPbBr3 nanocrystals. Employing above- and below-gap photoluminescence measurements, we extract a distinct phonon mode with an energy of ~7 meV and identify the Pb-Br-Pb bending mode as the phonon involved in the up-conversion process. This result was corroborated by Raman spectroscopy. We confirm an up-conversion efficiency reaching up to 75%. Transient absorption measurements under conditions of sub-gap excitation also unexpectedly reveal coherent phonons for the subset of nanocrystals undergoing up-conversion. This coherence implies that the up-conversion and subsequent relaxation is accompanied by a synchronized and phased lattice motion. This study reveals that efficient up-conversion in CsPbBr3 nanocrystals is powered by a unique interplay between the soft lattice structure, phonons, and excited states dynamics.Comment: Main text has 6 figures, supporting information has 7 figures. total number of pages 3

    Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities

    Get PDF
    We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f/2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton

    Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from Rhodobacter sphaeroides

    Get PDF
    Light harvesting in photosynthetic organisms involves efficient transfer of energy from peripheral antenna complexes to core antenna complexes, and ultimately to the reaction center where charge separation drives downstream photosynthetic processes. Antenna complexes contain many strongly coupled chromophores, which complicates analysis of their electronic structure. Two-dimensional electronic spectroscopy (2DES) provides information on energetic coupling and ultrafast energy transfer dynamics, making the technique well suited for the study of photosynthetic antennae. Here, we present 2DES results on excited state properties and dynamics of a core antenna complex, light harvesting complex 1 (LH1), embedded in the photosynthetic membrane of Rhodobacter sphaeroides. The experiment reveals weakly allowed higher-lying excited states in LH1 at 770 nm, which transfer energy to the strongly allowed states at 875 nm with a lifetime of 40 fs. The presence of higher-lying excited states is in agreement with effective Hamiltonians constructed using parameters from crystal structures and atomic force microscopy (AFM) studies. The energy transfer dynamics between the higher- and lower-lying excited states agree with Redfield theory calculations
    • …
    corecore