14 research outputs found

    Multi-platform comparison of ten commercial master mixes for probe-based real-time polymerase chain reaction detection of bioterrorism threat agents for surge preparedness

    Get PDF
    The Centers for Disease Control and Prevention and United States Army Research Institute for Infectious Diseases have developed real-time PCR assays for the detection of bioterrorism threat agents. These assays all rely on a limited number of approved real-time PCR master mixes. Because the availability of these reagents is a critical element of bioterrorism preparedness, we undertook a joint national preparedness exercise to address the potential surge needs resulting from a large-scale bio-emergency. We identified 9 commercially-available potential alternatives to an existing approved master mix (LightCycler FastStart DNA Master HybProbes): the TaqMan Fast Universal PCR master mix, OmniMix HS, FAST qPCR master mix, EXPRESS qPCR SuperMix kit, QuantiFast Probe PCR kit, LightCycler FastStart DNA MasterPLUS HybProbe, Brilliant II FAST qPCR master mix, ABsolute Fast QPCR Mix and the HotStart IT Taq master mix. The performances of these kits were evaluated by the use of real-time PCR assays for four bioterrorism threat agents: Bacillus anthracis, Brucella melitensis, Burkholderia mallei and Francisella tularensis. The master mixes were compared for target-specific detection levels, as well as consistency of results among three different real-time PCR platforms (LightCycler, SmartCycler and 7500 Fast Dx). Realtime PCR analysis revealed that all ten kits performed well for agent detection on the 7500 Fast Dx instrument; however, the QuantiFast Probe PCR kit yielded the most consistently positive results across multiple real-time PCR platforms. We report that certain combinations of commonly used master mixes and instruments are not as reliable as others at detecting low concentrations of target DNA. Furthermore, our study provides laboratories the option to select from the commercial kits we evaluated to suit their preparedness needs

    Multi-platform comparison of ten commercial master mixes for probe-based real-time polymerase chain reaction detection of bioterrorism threat agents for surge preparedness

    Get PDF
    The Centers for Disease Control and Prevention and United States Army Research Institute for Infectious Diseases have developed real-time PCR assays for the detection of bioterrorism threat agents. These assays all rely on a limited number of approved real-time PCR master mixes. Because the availability of these reagents is a critical element of bioterrorism preparedness, we undertook a joint national preparedness exercise to address the potential surge needs resulting from a large-scale bio-emergency. We identified 9 commercially-available potential alternatives to an existing approved master mix (LightCycler FastStart DNA Master HybProbes): the TaqMan Fast Universal PCR master mix, OmniMix HS, FAST qPCR master mix, EXPRESS qPCR SuperMix kit, QuantiFast Probe PCR kit, LightCycler FastStart DNA MasterPLUS HybProbe, Brilliant II FAST qPCR master mix, ABsolute Fast QPCR Mix and the HotStart IT Taq master mix. The performances of these kits were evaluated by the use of real-time PCR assays for four bioterrorism threat agents: Bacillus anthracis, Brucella melitensis, Burkholderia mallei and Francisella tularensis. The master mixes were compared for target-specific detection levels, as well as consistency of results among three different real-time PCR platforms (LightCycler, SmartCycler and 7500 Fast Dx). Realtime PCR analysis revealed that all ten kits performed well for agent detection on the 7500 Fast Dx instrument; however, the QuantiFast Probe PCR kit yielded the most consistently positive results across multiple real-time PCR platforms. We report that certain combinations of commonly used master mixes and instruments are not as reliable as others at detecting low concentrations of target DNA. Furthermore, our study provides laboratories the option to select from the commercial kits we evaluated to suit their preparedness needs

    In silico Selection of Amplification Targets for Rapid Polymorphism Screening in Ebola Virus Outbreaks

    Get PDF
    To achieve maximum transmission chain tracking in the current Ebola outbreak, whole genome sequencing (WGS) has been proposed to provide optimal information. However, WGS remains a costly and time-intensive procedure that is poorly suited for the large numbers of samples being generated, especially under severe time and work-environment constraints as in the present DRC outbreak. To better prepare for future outbreaks, where an apparent single outbreak may actually represent overlapping outbreaks caused by independent variants, and where rapid identification of emerging new transmission chains will be essential, a more practical method would be to amplify and sequence genomic areas that reveal the highest information to differentiate EBOV variants. We have identified four highly informative polymorphism PCR sequencing targets, suitable for rapid tracing of transmission chains and identification of new sources of Ebola outbreaks, an approach which will be far more practical in the field than WGS

    Ebolavirus comparative genomics

    Get PDF
    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).Fil: Jun, Se Ran. Oak Ridge National Laboratory; Estados Unidos. University of Tennessee; Estados UnidosFil: Leuze, Michael R.. Oak Ridge National Laboratory; Estados UnidosFil: Nookaew, Intawat. Oak Ridge National Laboratory; Estados UnidosFil: Uberbacher, Edward C.. Oak Ridge National Laboratory; Estados UnidosFil: Land, Miriam. Oak Ridge National Laboratory; Estados UnidosFil: Zhang, Qian. Oak Ridge National Laboratory; Estados Unidos. University of Tennessee; Estados UnidosFil: Wanchai, Visanu. Oak Ridge National Laboratory; Estados UnidosFil: Chai, Juanjuan. Oak Ridge National Laboratory; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Trolle, Thomas. Technical University of Denmark; DinamarcaFil: Lund, Ole. Technical University of Denmark; DinamarcaFil: Buzard, Gregory S.. Booze Allen Hamilton; Estados UnidosFil: Pedersen, Thomas D.. Technical University of Denmark; Dinamarca. Assays; DinamarcaFil: Wassenaar, Trudy M.. Molecular Microbiology and Genomics Consultants; AlemaniaFil: Ussery, David W.. Oak Ridge National Laboratory; Estados Unidos. University of Tennessee; Estados Unidos. Technical University of Denmark; Dinamarc

    Deamidation of Peptides in Aerobic Nitric Oxide Solution by a Nitrosative Pathway

    No full text
    Hydrolytic deamidation of asparagine (Asn) and glutamine (Gln) residues to aspartate (Asp) and glutamate (Glu), respectively, can have significant biological consequences. We hypothesize that a wholly different mechanism of deamidation might occur in the presence of aerobic nitric oxide (NO). Accordingly, we examined the deamidating ability of aerobic NO toward three model peptides, 2,4-dinitrophenyl (DNP)-Pro-Gln-Gly, Lys-Trp-Asp-Asn-Gln, and Ser-Glu-Asn-Tyr-Pro-Ile-Val, incubating them with the NO-generating compound, Et(2)N[N(O)NO]Na (DEA/NO, 30-48 mM), in aerobic, pH 7.4, buffer at 37 degrees C. DNP-Pro-Glu-Gly was detected after 2 h, while Lys-Trp-Asp-Asp-Gln, Lys-Trp-Asp-Asn-Glu, and Ser-Glu-Asp-Tyr-Pro-Ile-Val were detected within 10 min, accumulating in apparent yields of up to approximately 10%. In the latter case, tyrosine nitration was also observed, producing the expected nitrotyrosine residue. DEA/NO solutions preincubated to exhaust the NO before the peptides were added did not induce detectable deamidation. The data demonstrate that aerobic NO exposures can lead to nitrosative deamidation of peptides, a pathway that differs from the established hydrolytic deamidation mechanism in several key respects: the by-products of the former are molecular nitrogen and an acid (HONO) while that of the latter is a base (NH(3)); the nitrosative path can in principle proceed in the absence of water molecules; Asn is much more easily deamidated than Gln in the hydrolytic pathway, while the two amino acid residues were deamidated to a similar extent by exposure to NO in the presence of oxygen
    corecore