33 research outputs found

    Selecting Rootstocks for Utah Peach Orchards

    Get PDF
    Peaches are the second most important fruit crop in Utah by acreage. Peach fruit that ripen under our high desert conditions (warm sunny days and cool nights) are valued in the market for their flavor and sugar content. However, peaches are more sensitive than most other fruit crops to our alkaline soil conditions, and often suffer from iron chlorosis. Commercial peach trees consist of two cultivars or varieties that are grafted together: the scion produces the above ground portion of the tree, and the rootstock forms the roots and the base of the trunk (below ground). The scion variety determines the characteristics of the fruit (size, color, quality) and the flowering and fruit ripening time. The rootstock variety influences tree size and growth habit, productivity, insect and disease resistance, soil adaptability, and may also influence cold hardiness

    Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach

    Get PDF
    BACKGROUND: Dormancy associated MADS-box (DAM) genes are candidates for the regulation of growth cessation and terminal bud formation in peach. These genes are not expressed in the peach mutant evergrowing, which fails to cease growth and enter dormancy under dormancy-inducing conditions. We analyzed the phylogenetic relationships among and the rates and patterns of molecular evolution within DAM genes in the phylogenetic context of the MADS-box gene family. RESULTS: The peach DAM genes grouped with the SVP/StMADS11 lineage of type II MIKC(C )MADS-box genes. Phylogenetic analyses suggest that the peach SVP/StMADS11-like gene family, which contains significantly more members than annual model plants, expanded through serial tandem gene duplication. We found evidence of strong purifying selection acting to constrain functional divergence among the peach DAM genes and only a single codon, located in the C-terminal region, under significant positive selection. CONCLUSION: Because all DAM genes are expressed in peach and are subjected to strong purifying selection we suggest that the duplicated genes have been maintained by subfunctionalization and/or neofunctionalization. In addition, this pattern of selection suggests that the DAM genes are important for peach growth and development

    Transcriptomics reveal the genetic coordination of early defense to Armillaria root rot (ARR) in Prunus spp

    Get PDF
    Armillaria root rot (ARR) poses a significant threat to the long-term productivity of stone-fruit and nut crops in the predominant production area of the United States. To mitigate this issue, the development of ARR-resistant and horticulturally-acceptable rootstocks is a crucial step towards the maintenance of production sustainability. To date, genetic resistance to ARR has been found in exotic plum germplasm and a peach/plum hybrid rootstock, ’MP-29‘. However, the widely-used peach rootstock Guardian¼ is susceptible to the pathogen. To understand the molecular defense mechanisms involved in ARR resistance in Prunus rootstocks, transcriptomic analyses of one susceptible and two resistant Prunus spp. were performed using two causal agents of ARR, including Armillaria mellea and Desarmillaria tabescens. The results of in vitro co-culture experiments revealed that the two resistant genotypes showed different temporal response dynamics and fungus-specific responses, as seen in the genetic response. Gene expression analysis over time indicated an enrichment of defense-related ontologies, including glucosyltransferase activity, monooxygenase activity, glutathione transferase activity, and peroxidase activity. Differential gene expression and co-expression network analysis highlighted key hub genes involved in the sensing and enzymatic degradation of chitin, GSTs, oxidoreductases, transcription factors, and biochemical pathways likely involved in Armillaria resistance. These data provide valuable resources for the improvement of ARR resistance in Prunus rootstocks through breeding

    Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F-2 mapping population

    No full text
    Chilling requirement (CR) for floral bud dormancy release is one of the major limiting factors for geographical adaptation of fruiting trees. Using a whole genome sequencing approach (Illumina platform), we explored polymorphism underlying phenotypic differences among individuals in a peach F-2 cross segregating for chilling requirement and bloom date. Allelic configuration of individuals, which represented phenotypic extremes in the cross (300 vs. 1,100 chill hours) allowed reconstruction of low- and high-chill haplotypes within three most significant quantitative trait locus (QTL) intervals on the Prunus G1, G4, and G7. We detected single nucleotide polymorphic sites (SNPs), small deletions and insertions (DIPs), and large structural variants (SVs) associated with low-chill haplotypes and created a prioritized list of candidate genes based on functionally characterized homologs from Arabidopsis thaliana. Two dormancy associated genes PpeDAM5 and PpeDAM6 are the strongest candidate genes for the major QTL signal at the lower end of G1. Also, key functional genes involved in the Polycomb repressive mechanism, cell cycle progression, and hormone regulation were evident as strong candidate genes underlying QTL intervals in this peach cross

    Peach

    Get PDF
    65 Pags., Tabls., Bibliograf.The peach is the third most produced temperate tree fruit species behind apple and pear. This diploid species, Prunus persica, is naturally self-pollinating unlike most of the other cultivated Prunus species. Its center of diversity is in China, where it was domesticated. Starting about 3,000 years ago, the peach was moved from China to all temperate and subtropical climates within the Asian continent and then, more than 2,000 years ago, spread to Persia (present day Iran) via the Silk Road and from there throughout Europe. From Europe it was taken by the Spanish and Portuguese explorers to the Americas. It has an extensive history of breeding that has resulted in scion cultivars with adaptability from cold temperate to tropical zones, a ripening season extending for 6–8 months, and a wide range of fruit and tree characteristics. Peach has also been crossed with species in the Amygdalus and Prunophora subgenera to produce interspecific rootstocks tolerant to soil and disease problems to which P. persica has limited or no resistance. It is the best known temperate fruit species from a genetics perspective and as a model plant has a large array of genomics tools that are beginning to have an impact on the development of new cultivars.Peer reviewe
    corecore