733 research outputs found

    Mutational analysis of βCOP (Sec26p) identifies an appendage domain critical for function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The appendage domain of the γCOP subunit of the COPI vesicle coat bears a striking structural resemblance to adaptin-family appendages despite limited primary sequence homology. Both the γCOP appendage domain and an equivalent region on βCOP contain the FxxxW motif; the conservation of this motif suggested the existence of a functional appendage domain in βCOP.</p> <p>Results</p> <p>Sequence comparisons in combination with structural prediction tools show that the fold of the COOH-terminus of Sec26p is strongly predicted to closely mimic that of adaptin-family appendages. Deletion of the appendage domain of Sec26p results in inviability in yeast, over-expression of the deletion construct is dominant negative and mutagenesis of this region identifies residues critical for function. The ArfGAP Glo3p was identified via suppression screening as a potential downstream modulator of Sec26p in a manner that is independent of the GAP activity of Glo3p but requires the presence of the COOH-terminal ISS motifs.</p> <p>Conclusion</p> <p>Together, these results indicate an essential function for the predicted βCOP appendage and suggest that both COPI appendages perform a biologically active regulatory role with a structure related to adaptin-family appendage domains.</p

    Ariel - Volume 4 Number 6

    Get PDF
    Editors David A. Jacoby Eugenia Miller Tom Williams Associate Editors Paul Bialas Terry Burt Michael Leo Gail Tenikat Editor Emeritus and Business Manager Richard J. Bonnano Movie Editor Robert Breckenridge Staff Richard Blutstein Mary F. Buechler J.D. Kanofsky Rocket Weber David Maye

    Transitioning ECP Software Technology into a Foundation for Sustainable Research Software

    Full text link
    Research software plays a crucial role in advancing scientific knowledge, but ensuring its sustainability, maintainability, and long-term viability is an ongoing challenge. The Sustainable Research Software Institute (SRSI) Model has been designed to address the concerns, and presents a comprehensive framework designed to promote sustainable practices in the research software community. However the SRSI Model does not address the transitional requirements for the Exascale Computing Project (ECP) Software Technology (ECP-ST) focus area specifically. This white paper provides an overview and detailed description of how ECP-ST will transition into the SRSI in a compressed time frame that a) meets the needs of the ECP end-of-technical-activities deadline; and b) ensures the continuity of the sustainability efforts that are already underway.Comment: 7 pages, 1 figur

    An Open Community-Driven Model For Sustainable Research Software: Sustainable Research Software Institute

    Full text link
    Research software plays a crucial role in advancing scientific knowledge, but ensuring its sustainability, maintainability, and long-term viability is an ongoing challenge. To address these concerns, the Sustainable Research Software Institute (SRSI) Model presents a comprehensive framework designed to promote sustainable practices in the research software community. This white paper provides an in-depth overview of the SRSI Model, outlining its objectives, services, funding mechanisms, collaborations, and the significant potential impact it could have on the research software community. It explores the wide range of services offered, diverse funding sources, extensive collaboration opportunities, and the transformative influence of the SRSI Model on the research software landscapeComment: 13 pages, 1 figur

    Testing general relativity with accretion onto compact objects

    Get PDF
    The X-ray emission of neutron stars and black holes presents a rich phenomenology that can lead us to a better understanding of their nature and to address more general physics questions: Does general relativity apply in the strong gravity regime? Is spacetime around black holes described by the Kerr metric? This white paper considers how we can investigate these questions by studying reverberation mapping and quasi-periodic oscillations in accreting systems with a combination of high-spectral and high-timing resolution. In the near future, we will be able to study compact objects in the X-rays in a new way: advancements in transition-edge sensors (TES) technology will allow for electron-volt-resolution spectroscopy combined with nanoseconds-precision timing.Comment: White paper submitted for Astro2020 Decadal Survey. 8 pages, 2 figure

    Halo orbits in cosmological disk galaxies : tracers of information history

    Get PDF
    We analyze the orbits of stars and dark matter particles in the halo of a disk galaxy formed in a cosmological hydrodynamical simulation. The halo is oblate within the inner ∼20 kpc and triaxial beyond this radius. About 43% of orbits are short axis tubes—the rest belong to orbit families that characterize triaxial potentials (boxes, long-axis tubes and chaotic orbits), but their shapes are close to axisymmetric. We find no evidence that the self-consistent distribution function of the nearly oblate inner halo is comprised primarily of axisymmetric short-axis tube orbits. Orbits of all families and both types of particles are highly eccentric, with mean eccentricity �0.6. We find that randomly selected samples of halo stars show no substructure in “integrals of motion” space. However, individual accretion events can clearly be identified in plots of metallicity versus formation time. Dynamically young tidal debris is found primarily on a single type of orbit. However, stars associated with older satellites become chaotically mixed during the formation process (possibly due to scattering by the central bulge and disk, and baryonic processes), and appear on all four types of orbits. We find that the tidal debris in cosmological hydrodynamical simulations experiences significantly more chaotic evolution than in collisionless simulations, making it much harder to identify individual progenitors using phase space coordinates alone. However, by combining information on stellar ages and chemical abundances with the orbital properties of halo stars in the underlying self-consistent potential, the identification of progenitors is likely to be possible

    Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Get PDF
    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model
    corecore