600 research outputs found

    Effects of Cyanobacterial Lipopolysaccharides from Microcystis on Glutathione-Based Detoxification Pathways in the Zebrafish (Danio rerio) Embryo

    Get PDF
    Cyanobacteria (“blue-green algae”) are recognized producers of a diverse array of toxic secondary metabolites. Of these, the lipopolysaccharides (LPS), produced by all cyanobacteria, remain to be well investigated. In the current study, we specifically employed the zebrafish (Danio rerio) embryo to investigate the effects of LPS from geographically diverse strains of the widespread cyanobacterial genus, Microcystis, on several detoxifying enzymes/pathways, including glutathione-S-transferase (GST), glutathione peroxidase (GPx)/glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), and compared observed effects to those of heterotrophic bacterial (i.e., E. coli) LPS. In agreement with previous studies, cyanobacterial LPS significantly reduced GST in embryos exposed to LPS in all treatments. In contrast, GPx moderately increased in embryos exposed to LPS, with no effect on reciprocal GR activity. Interestingly, total glutathione levels were elevated in embryos exposed to Microcystis LPS, but the relative levels of reduced and oxidized glutathione (i.e., GSH/GSSG) were, likewise, elevated suggesting that oxidative stress is not involved in the observed effects as typical of heterotrophic bacterial LPS in mammalian systems. In further support of this, no effect was observed with respect to CAT or SOD activity. These findings demonstrate that Microcystis LPS affects glutathione-based detoxification pathways in the zebrafish embryo, and more generally, that this model is well suited for investigating the apparent toxicophore of cyanobacterial LPS, including possible differences in structure-activity relationships between heterotrophic and cyanobacterial LPS, and teleost fish versus mammalian systems

    Psychoactive substances and the political ecology of mental distress

    Get PDF
    The goal of this paper is to both understand and depathologize clinically significant mental distress related to criminalized contact with psychoactive biotic substances by employing a framework known as critical political ecology of health and disease from the subdiscipline of medical geography. The political ecology of disease framework joins disease ecology with the power-calculus of political economy and calls for situating health-related phenomena in their broad social and economic context, demonstrating how large-scale global processes are at work at the local level, and giving due attention to historical analysis in understanding the relevant human-environment relations. Critical approaches to the political ecology of health and disease have the potential to incorporate ever-broadening social, political, economic, and cultural factors to challenge traditional causes, definitions, and sociomedical understandings of disease. Inspired by the patient-centered medical diagnosis critiques in medical geography, this paper will use a critical political ecology of disease approach to challenge certain prevailing sociomedical interpretations of disease, or more specifically, mental disorder, found in the field of substance abuse diagnostics and the related American punitive public policy regimes of substance abuse prevention and control, with regards to the use of biotic substances. It will do this by first critically interrogating the concept of "substances" and grounding them in an ecological context, reviewing the history of both the development of modern substance control laws and modern substance abuse diagnostics, and understanding the biogeographic dimensions of such approaches. It closes with proposing a non-criminalizing public health approach for regulating human close contact with psychoactive substances using the example of cannabis use

    Epidural Hematoma Following Cervical Spine Surgery.

    Get PDF
    STUDY DESIGN: A multicentered retrospective case series. OBJECTIVE: To determine the incidence and circumstances surrounding the development of a symptomatic postoperative epidural hematoma in the cervical spine. METHODS: Patients who underwent cervical spine surgery between January 1, 2005, and December 31, 2011, at 23 institutions were reviewed, and all patients who developed an epidural hematoma were identified. RESULTS: A total of 16 582 cervical spine surgeries were identified, and 15 patients developed a postoperative epidural hematoma, for a total incidence of 0.090%. Substantial variation between institutions was noted, with 11 sites reporting no epidural hematomas, and 1 site reporting an incidence of 0.76%. All patients initially presented with a neurologic deficit. Nine patients had complete resolution of the neurologic deficit after hematoma evacuation; however 2 of the 3 patients (66%) who had a delay in the diagnosis of the epidural hematoma had residual neurologic deficits compared to only 4 of the 12 patients (33%) who had no delay in the diagnosis or treatment (P = .53). Additionally, the patients who experienced a postoperative epidural hematoma did not experience any significant improvement in health-related quality-of-life metrics as a result of the index procedure at final follow-up evaluation. CONCLUSION: This is the largest series to date to analyze the incidence of an epidural hematoma following cervical spine surgery, and this study suggest that an epidural hematoma occurs in approximately 1 out of 1000 cervical spine surgeries. Prompt diagnosis and treatment may improve the chance of making a complete neurologic recovery, but patients who develop this complication do not show improvements in the health-related quality-of-life measurements

    Reduced maternal immunity and vertical transfer of immunity against SARS-CoV-2 variants of concern with COVID-19 exposure or initial vaccination in pregnancy.

    Get PDF
    INTRODUCTION: As the SARS-CoV-2 pandemic continues to evolve, we face new variants of concern with a concurrent decline in vaccine booster uptake. We aimed to evaluate the difference in immunity gained from the original SARS-CoV-2 mRNA vaccine series in pregnancy versus SARS-CoV-2 exposure during pregnancy against recent variants of concern. STUDY DESIGN: This is a retrospective analysis of previously collected samples from 192 patients who delivered between February 2021 and August 2021. Participants were categorized as 1) COVID vaccine: mRNA vaccine in pregnancy, 2) COVID-exposed, and 3) controls. The primary outcome was neutralizing capacity against wild-type, Delta, and Omicron-B1 between cohorts. Secondary outcomes include a comparison of cord-blood ID50 as well as the efficiency of vertical transfer, measured by cord-blood:maternal blood ID50 for each variant. RESULTS: Pregnant women with COVID-19 vaccination had a greater spike in IgG titers compared to both those with COVID-19 disease exposure and controls. Both COVID exposure and vaccination resulted in immunity against Delta, but only COVID vaccination resulted in significantly greater Omicron ID-50 versus controls. The neutralizing capacity of serum from newborns was lower than that of their mothers, with COVID-vaccination demonstrating higher cord-blood ID50 vs wildtype and Delta variants compared to control or COVID-exposed, but neither COVID-exposure nor vaccination demonstrated significantly higher Omicron ID50 in cord-blood compared to controls. There was a 0.20 (0.07-0.33, p=0.004) and 0.12 (0.0-0.24, p=0.05) increase in cord-blood:maternal blood ID50 with COVID vaccination compared to COVID-19 exposure for wild-type and Delta respectively. In pair-wise comparison, vertical transfer of neutralization capacity (cord-blood:maternal blood ID50) was greatest for wild-type and progressively reduced for Delta and Omicron ID50. CONCLUSION: Pregnant patients with either an initial mRNA vaccination series or COVID-exposure demonstrated reduced immunity against newer variants compared to wild-type as has been reported for non-pregnant individuals; however, the COVID-vaccination series afforded greater cross-variant immunity to pregnant women, specifically against Omicron, than COVID-disease. Vertical transfer of immunity is greater in those with COVID vaccination vs COVID disease exposure but is reduced with progressive variants. Our results reinforce the importance of bivalent booster vaccination in pregnancy for both maternal and infant protection and also provide a rationale for receiving updated vaccines as they become available

    Therapy with high-dose Interleukin-2 (HD IL-2) in metastatic melanoma and renal cell carcinoma following PD1 or PDL1 inhibition

    Full text link
    Abstract Background Metastatic melanoma (mM) and renal cell carcinoma (mRCC) are often treated with anti-PD-1 based therapy, however not all patients respond and further therapies are needed. High dose interleukin-2 (HD IL-2) can lead to durable responses in a subset of mM and mRCC patients. The efficacy and toxicity of HD IL-2 therapy following anti-PD-1 or anti-PD-L1 therapy have not yet been explored. Methods Reports on mM and mRCC patients who had received HD IL-2 after PD-1 or PD-L1 inhibition were queried from the PROCLAIMSM database. Patient characteristics, toxicity and efficacy were analyzed. Results A total of 57 patients (40 mM, 17 mRCC) were treated with high dose IL-2 after PD-1 or PD-L1 inhibition and had data recorded in the PROCLAIM database. The best overall response rate to HD IL-2 was 22.5% for mM (4 complete response (CR), 5 partial responses (PRs)) and 24% for mRCC (2 CRs, 2 PRs). The toxicity related to HD IL-2 observed in these patients was similar to that observed in patients treated with HD IL-2 without prior checkpoint blockade. One patient who had received prior PD-L1 blockade developed drug induced pneumonitis with HD IL-2 requiring steroid therapy. Conclusion In this retrospective analysis, HD IL-2 therapy displayed durable antitumor activity in mM and mRCC patients who progressed following treatment with PD-1 and PD-L1 inhibition. The toxicities were generally manageable and consistent with expectations from HD IL-2 but physicians should watch for immune related toxicities such as pneumonitis. This analysis supports the development of randomized prospective trials to assess the proper sequencing and combination of immune checkpoint blockade and cytokine therapy.https://deepblue.lib.umich.edu/bitstream/2027.42/148134/1/40425_2019_Article_522.pd

    Reduced maternal immunity and vertical transfer of immunity against SARS-CoV-2 variants of concern with COVID-19 exposure or initial vaccination in pregnancy

    Get PDF
    IntroductionAs the SARS-CoV-2 pandemic continues to evolve, we face new variants of concern with a concurrent decline in vaccine booster uptake. We aimed to evaluate the difference in immunity gained from the original SARS-CoV-2 mRNA vaccine series in pregnancy versus SARS-CoV-2 exposure during pregnancy against recent variants of concern.Study DesignThis is a retrospective analysis of previously collected samples from 192 patients who delivered between February 2021 and August 2021. Participants were categorized as 1) COVID vaccine: mRNA vaccine in pregnancy, 2) COVID-exposed, and 3) controls. The primary outcome was neutralizing capacity against wild-type, Delta, and Omicron-B1 between cohorts. Secondary outcomes include a comparison of cord-blood ID50 as well as the efficiency of vertical transfer, measured by cord-blood:maternal blood ID50 for each variant.ResultsPregnant women with COVID-19 vaccination had a greater spike in IgG titers compared to both those with COVID-19 disease exposure and controls. Both COVID exposure and vaccination resulted in immunity against Delta, but only COVID vaccination resulted in significantly greater Omicron ID-50 versus controls. The neutralizing capacity of serum from newborns was lower than that of their mothers, with COVID-vaccination demonstrating higher cord-blood ID50 vs wildtype and Delta variants compared to control or COVID-exposed, but neither COVID-exposure nor vaccination demonstrated significantly higher Omicron ID50 in cord-blood compared to controls. There was a 0.20 (0.07-0.33, p=0.004) and 0.12 (0.0-0.24, p=0.05) increase in cord-blood:maternal blood ID50 with COVID vaccination compared to COVID-19 exposure for wild-type and Delta respectively. In pair-wise comparison, vertical transfer of neutralization capacity (cord-blood:maternal blood ID50) was greatest for wild-type and progressively reduced for Delta and Omicron ID50.ConclusionPregnant patients with either an initial mRNA vaccination series or COVID-exposure demonstrated reduced immunity against newer variants compared to wild-type as has been reported for non-pregnant individuals; however, the COVID-vaccination series afforded greater cross-variant immunity to pregnant women, specifically against Omicron, than COVID-disease. Vertical transfer of immunity is greater in those with COVID vaccination vs COVID disease exposure but is reduced with progressive variants. Our results reinforce the importance of bivalent booster vaccination in pregnancy for both maternal and infant protection and also provide a rationale for receiving updated vaccines as they become available

    Performance of a Limiting-Antigen Avidity Enzyme Immunoassay for Cross-Sectional Estimation of HIV Incidence in the United States

    Get PDF
    Background: A limiting antigen avidity enzyme immunoassay (HIV-1 LAg-Avidity assay) was recently developed for cross-sectional HIV incidence estimation. We evaluated the performance of the LAg-Avidity assay alone and in multi-assay algorithms (MAAs) that included other biomarkers. Methods and Findings: Performance of testing algorithms was evaluated using 2,282 samples from individuals in the United States collected 1 month to >8 years after HIV seroconversion. The capacity of selected testing algorithms to accurately estimate incidence was evaluated in three longitudinal cohorts. When used in a single-assay format, the LAg-Avidity assay classified some individuals infected >5 years as assay positive and failed to provide reliable incidence estimates in cohorts that included individuals with long-term infections. We evaluated >500,000 testing algorithms, that included the LAg-Avidity assay alone and MAAs with other biomarkers (BED capture immunoassay [BED-CEIA], BioRad-Avidity assay, HIV viral load, CD4 cell count), varying the assays and assay cutoffs. We identified an optimized 2-assay MAA that included the LAg-Avidity and BioRad-Avidity assays, and an optimized 4-assay MAA that included those assays, as well as HIV viral load and CD4 cell count. The two optimized MAAs classified all 845 samples from individuals infected >5 years as MAA negative and estimated incidence within a year of sample collection. These two MAAs produced incidence estimates that were consistent with those from longitudinal follow-up of cohorts. A comparison of the laboratory assay costs of the MAAs was also performed, and we found that the costs associated with the optimal two assay MAA were substantially less than with the four assay MAA. Conclusions: The LAg-Avidity assay did not perform well in a single-assay format, regardless of the assay cutoff. MAAs that include the LAg-Avidity and BioRad-Avidity assays, with or without viral load and CD4 cell count, provide accurate incidence estimates

    MIPS: analysis and annotation of genome information in 2007

    Get PDF
    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de)
    corecore