33 research outputs found

    Modeling of Aortic Valve Anatomic Geometry from Clinical Multi Detector-Row Computed Tomography Images

    Get PDF
    Transcatheter aortic valve implantation (TAVI) is an emerging and viable alternative to surgical valve replacement. A TAVI procedure involves insertion of a catheter into the heart through an artery or transapically, and expanding valve stent in place. This procedure dramatically reduces the recovery time by eliminating the need for open heart surgery. Understanding the biomechanics of the stent-valve interaction is crucial for proper device deployment and function. In this study, we examine the extraction of valve geometries and creation of valve models from multi-detector row computed tomography (MDCT) images that may eventually be used to model stent expansion on a patient specific basis. Our study accomplished three specific goals using clinical 64-slice CT data from Hartford Hospital. First, manual measurement of a variety of aortic root anatomic dimensions was performed on 95 patients using standard methods, to which other measurement methods could be compared. Second, we investigated automatic 2D measurement and a 3D measurement technique and compared them to the standard measurements. Both 2D automatic and 3D manual measurements were similar to the standard manual measurements, but 3D providing more insight into valve shape for TAVI sizing and positioning. Third, we investigated the use of statistical shape models (SSMs) to perform automatic 3D model creation. Training of 3D SSMs is extremely labor-intensive and prone to error because of the manual landmarking step, so we created a novel method to perform automatic landmarking of training data. Our method used high dimensional warping (HDW) to propagate landmarks from a template model. We used this landmarking method to create point distribution models of the aortic valve from patient data. Future work would include completion of the 3D SSM implementation using active appearance models

    Effects of weather and season on human brain volume.

    No full text
    We present an exploratory cross-sectional analysis of the effect of season and weather on Freesurfer-derived brain volumes from a sample of 3,279 healthy individuals collected on two MRI scanners in Hartford, CT, USA over a 15 year period. Weather and seasonal effects were analyzed using a single linear regression model with age, sex, motion, scan sequence, time-of-day, month of the year, and the deviation from average barometric pressure, air temperature, and humidity, as covariates. FDR correction for multiple comparisons was applied to groups of non-overlapping ROIs. Significant negative relationships were found between the left- and right- cerebellum cortex and pressure (t = -2.25, p = 0.049; t = -2.771, p = 0.017). Significant positive relationships were found between left- and right- cerebellum cortex and white matter between the comparisons of January/June and January/September. Significant negative relationships were found between several subcortical ROIs for the summer months compared to January. An opposing effect was observed between the supra- and infra-tentorium, with opposite effect directions in winter and summer. Cohen's d effect sizes from monthly comparisons were similar to those reported in recent psychiatric big-data publications, raising the possibility that seasonal changes and weather may be confounds in large cohort studies. Additionally, changes in brain volume due to natural environmental variation have not been reported before and may have implications for weather-related and seasonal ailments

    Inferring pathobiology from structural MRI in schizophrenia and bipolar disorder: Modeling head motion and neuroanatomical specificity

    No full text
    Despite over 400 peer-reviewed structural MRI publications documenting neuroanatomic abnormalities in bipolar disorder and schizophrenia, the confounding effects of head motion and the regional specificity of these defects are unclear. Using a large cohort of individuals scanned on the same research dedicated MRI with broadly similar protocols, we observe reduced cortical thickness indices in both illnesses, though less pronounced in bipolar disorder. While schizophrenia (n = 226) was associated with wide-spread surface area reductions, bipolar disorder (n = 227) and healthy comparison subjects (n = 370) did not differ. We replicate earlier reports that head motion (estimated from time-series data) influences surface area and cortical thickness measurements and demonstrate that motion influences a portion, but not all, of the observed between-group structural differences. Although the effect sizes for these differences were small to medium, when global indices were covaried during vertex-level analyses, between-group effects became nonsignificant. This analysis raises doubts about the regional specificity of structural brain changes, possible in contrast to functional changes, in affective and psychotic illnesses as measured with current imaging technology. Given that both schizophrenia and bipolar disorder showed cortical thickness reductions, but only schizophrenia showed surface area changes, and assuming these measures are influenced by at least partially unique sets of biological factors, then our results could indicate some degree of specificity between bipolar disorder and schizophrenia. Hum Brain Mapp 38:3757-3770, 2017. © 2017 Wiley Periodicals, Inc

    The effect of high-dose atorvastatin on neural activity and cognitive function.

    No full text
    BACKGROUND: Functional magnetic resonance imaging (fMRI) has not been used to assess the effects of statins on the brain. We assessed the effect of statins on cognition using standard neuropsychological assessments and brain neural activation with fMRI on two tasks. METHODS: Healthy statin-naïve men and women (48±15 years) were randomized to 80 mg/day atorvastatin (n=66; 27 men) or placebo (n=84; 48 men) for 6 months. Participants completed cognitive testing while on study drug and 2 months after treatment cessation using alternative test and task versions. RESULTS: There were few changes in standard neuropsychological tests with drug treatment (all P\u3e.56). Total and delayed recall from the Hopkins Verbal Learning Test-Revised increased in both groups (P CONCLUSION: Six months of high dose atorvastatin therapy is not associated with measurable changes in neuropsychological test scores, but did evoke transient differences in brain activation patterns. Larger, longer-term clinical trials are necessary to confirm these findings and evaluate their clinical implications

    'Geography is pregnant' and 'geography's milk is flowing': metaphors for a postcolonial discipline?

    Get PDF
    This paper attempts to mobilise the metaphors of pregnancy and lactation to address the imperatives arising from British academic geography’s postcolonial position. We embed our argument in our readings of extracts from two consciously postcolonial fictional texts. In the first part of the paper we consider geography as a discipline that is pregnant but ‘in trouble’ to illustrate the paradoxical struggle of the discipline to be a global discipline whilst at the same time marginalising the voices and perspectives that make it global. In the second part of the paper we consider geography as a discipline whose ‘milk is flowing’ to suggest ways that the discipline can acknowledge its global interconnectedness to produce a mutually responsible academic agency
    corecore