5 research outputs found

    Combined intermittent hypoxia and surface muscle electrostimulation as a method to increase peripheral blood progenitor cell concentration

    Get PDF
    Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection

    L-selectin expression is low on CD34 + cells from patients with chronic myeloid leukemia and interferon-a up-regulates this expression

    Get PDF
    Background and objective: altered adhesive interaction between bone marrow (BM) stroma and progenitors in chronic myeloid leukemia (CML) may be in part caused by abnormal expression of cell adhesion molecules (CAMs) on malignant progenitor cells. Treatment of CML with interferon-a (IFN-a) re-establishes normal hemopoiesis in some patients in part by restoring normal adhesive interactions between CML progenitors and BM microenvironment, which may in turn be mediated by correcting CAM expression on progenitors. Design and methods: we investigated the expression of CAMs (L-selectin, b((2))-integrin, LFA-3, ICAM-1, ICAM-3, NCAM) on purified BM CD34(+) cells from CML patients (n= 34) and healthy adults (n= 15) by flow cytometry. Modulation of L-selectin expression on CD34(+) cells from CML after in vitro treatment with IFN-a was also investigated. RESULTS: The mean percentage of CD34(+ )cells expressing L-selectin was significantly lower in CML patients (25.4+/-12.8%) than in normal controls (68.7+/-8.3%, n=15). CD34(+)/HLA-DR(-/low) and CD34(+)/ CD38(-/low) co-expressing L-selectin were also significantly lower in untreated CML (27.4+/-21.5% and 39.8+/-26.7%, respectively, n=8) than in controls (61+/-17% and 83.7+/-10%, respectively, n=7). In vitro treatment with IFN-a of purified CD34(+) BM cells from untreated CML patients (n=8) induced a significant, dose and time-dependent increase in the L-selectin expression as indicated by FACS analysis. Interpretation and conclusions: we hypothesize that this L-selectin deficiency reflects a cell surface adhesion defect of progenitors from CML that is partially restored by in vitro IFN-a treatment. These data may help to explain the adhesive abnormalities of CML progenitors to the BM microenvironment and the in vitro restoration of adhesion capacity after IFN-a treatment

    Combined intermittent hypoxia and surface muscle electrostimulation as a method to increase peripheral blood progenitor cell concentration.

    No full text
    Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection

    Combined intermittent hypoxia and surface muscle electrostimulation as a method to increase peripheral blood progenitor cell concentration.

    No full text
    Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection
    corecore