63 research outputs found

    Compact phases of polymers with hydrogen bonding

    Full text link
    We propose an off-lattice model for a self-avoiding homopolymer chain with two different competing attractive interactions, mimicking the hydrophobic effect and the hydrogen bond formation respectively. By means of Monte Carlo simulations, we are able to trace out the complete phase diagram for different values of the relative strength of the two competing interactions. For strong enough hydrogen bonding, the ground state is a helical conformation, whereas with decreasing hydrogen bonding strength, helices get eventually destabilized at low temperature in favor of more compact conformations resembling β\beta-sheets appearing in native structures of proteins. For weaker hydrogen bonding helices are not thermodynamically relevant anymore.Comment: 5 pages, 3 figures; revised version published in PR

    Thermodynamic Additivity of Sequence Variations: An Algorithm for Creating High Affinity Peptides Without Large Libraries or Structural Information

    Get PDF
    BACKGROUND: There is a significant need for affinity reagents with high target affinity/specificity that can be developed rapidly and inexpensively. Existing affinity reagent development approaches, including protein mutagenesis, directed evolution, and fragment-based design utilize large libraries and/or require structural information thereby adding time and expense. Until now, no systematic approach to affinity reagent development existed that could produce nanomolar affinity from small chemically synthesized peptide libraries without the aid of structural information. METHODOLOGY/PRINCIPAL FINDINGS: Based on the principle of additivity, we have developed an algorithm for generating high affinity peptide ligands. In this algorithm, point-variations in a lead sequence are screened and combined in a systematic manner to achieve additive binding energies. To demonstrate this approach, low-affinity lead peptides for multiple protein targets were identified from sparse random sequence space and optimized to high affinity in just two chemical steps. In one example, a TNF-α binding peptide with K(d) = 90 nM and high target specificity was generated. The changes in binding energy associated with each variation were generally additive upon combining variations, validating the basis of the algorithm. Interestingly, cooperativity between point-variations was not observed, and in a few specific cases, combinations were less than energetically additive. CONCLUSIONS/SIGNIFICANCE: By using this additivity algorithm, peptide ligands with high affinity for protein targets were generated. With this algorithm, one of the highest affinity TNF-α binding peptides reported to date was produced. Most importantly, high affinity was achieved from small, chemically-synthesized libraries without the need for structural information at any time during the process. This is significantly different than protein mutagenesis, directed evolution, or fragment-based design approaches, which rely on large libraries and/or structural guidance. With this algorithm, high affinity/specificity peptide ligands can be developed rapidly, inexpensively, and in an entirely chemical manner

    Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin—an insight from molecular dynamics simulations with classical and ab initio force fields

    Get PDF
    In the field of enzymatic catalysis, creating activity from a non catalytic scaffold is a daunting task. Introduction of a catalytically active moiety within a protein scaffold offers an attractive means for the creation of artificial metalloenzymes. With this goal in mind, introduction of a biotinylated d6-piano-stool complex within streptavidin (SAV) affords enantioselective artificial transfer-hydrogenases for the reduction of prochiral ketones. Based on an X-ray crystal structure of a highly selective hybrid catalyst, displaying significant disorder around the biotinylated catalyst [η6-(p-cymene)Ru(Biot-p-L)Cl], we report on molecular dynamics simulations to shed light on the protein–cofactor interactions and contacts. The results of these simulations with classical force field indicate that the SAV-biotin and SAV-catalyst complexes are more stable than ligand-free SAV. The point mutations introduced did not affect significantly the overall behavior of SAV and, unexpectedly, the P64G substitution did not provide additional flexibility to the protein scaffold. The metal-cofactor proved to be conformationally flexible, and the S112K or P64G mutants proved to enhance this effect in the most pronounced way. The network of intermolecular hydrogen bonds is efficient at stabilizing the position of biotin, but much less at fixing the conformation of an extended biotinylated ligand. This leads to a relative conformational freedom of the metal-cofactor, and a poorly localized catalytic metal moiety. MD calculations with ab initio potential function suggest that the hydrogen bonds alone are not sufficient factors for full stabilization of the biotin. The hydrophobic biotin-binding pocket (and generally protein scaffold) maintains the hydrogen bonds between biotin and protein

    Bound Water at Protein-Protein Interfaces: Partners, Roles and Hydrophobic Bubbles as a Conserved Motif

    Get PDF
    Background There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region. Methodology A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å) X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules. Results The water molecules were found to be involved in: a) (bridging) interactions with both proteins (21%), b) favorable interactions with only one protein (53%), and c) no interactions with either protein (26%). This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins\u27 interaction (−0.46 kcal mol−1), but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol−1). Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or “hydrophobic bubbles”. Such water molecules may have an important biological purpose in mediating protein-protein interactions

    Regional model for nitrogen fertilization of site-specific rainfed corn in haplustolls of the central Pampas, Argentina

    Get PDF
    In semi-arid regions, soil water and nitrogen (N) are generally limiting factors for corn (Zea mays L.) production; hence, implementation of appropriate N fertilization strategies is needed. The use of precision agriculture practices based on specific site and crop properties may contribute to a better allocation of fertilizer among management zones (MZ). The aim of this study was to develop a model for diagnosis of N availability and recommendation of N fertilizer rates adjusted to MZ for dryland corn crops growing in Haplustolls. The model considered variability between MZ by including site-specific variables [soil available water content at sowing (SAW) and Available Nitrogen (soil available N-NO3 at planting + applied N, Nd)] using spatial statistical analysis. The study was conducted in Córdoba, Argentina in Haplustolls and consisted in four field trials of N fertilizer (range 0-161 kg N ha-1) in each MZ. The MZ were selected based on elevation maps analysis. Grain yields varied between MZ and increased with larger SAW and Nd at sowing. Grain responses to Nd and SAW in any MZ were not different between sites, allowing to fit a regional model whose parameters (Nd, Nd2, SAW, SAW2) contributed significantly (p < 0.001) to yield prediction. Agronomical and economically optimum N rates varied among MZs. However, the spatial variability of optimum N rates among MZs within sites was not enough to recommend variable N fertilizer rates instead of a uniform rate. Variable N fertilizer rates should be recommended only if variability in SAW and soil N among MZ is greater than that found in this work. © 2011 Springer Science+Business Media, LLC.Fil: Gregoret, M. C.. Asociación Argentina de Consorcios Regionales de Experimentación Agrícola; ArgentinaFil: Diaz Zorita, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Dardanelli, J.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Bongiovanni, R. G.. Instituto Nacional de Tecnología Agropecuaria; Argentin

    A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use

    No full text
    Specific strains should only be regarded as probiotics if they fulfill certain safety, technological and functional criteria. The aim of this work was to study, from a comprehensive point of view (in vitro and in vivo tests), three Lactobacillus strains (L. paracasei JP1, L. rhamnosus 64 and L. gasseri 37) isolated from feces of local newborns, determining some parameters of technological, biological and functional relevance. All strains were able to adequately grow in different economic culture media (cheese whey, buttermilk and milk), which were also suitable as cryoprotectants. As selective media, LP-MRS was more effective than B-MRS for the enumeration of all strains. The strains were resistant to different technological (frozen storage, high salt content) and biological (simulated gastrointestinal digestion after refrigerated storage in acidified milk, bile exposure) challenges. L. rhamnosus 64 and L. gasseri 37, in particular, were sensible to chloramphenicol, erythromycin, streptomycin, tetracycline and vancomycin, increased the phagocytic activity of peritoneal macrophage and induced the proliferation of IgA producing cells in small intestine when administered to mice. Even when clinical trails are still needed, both strains fulfilled the main criteria proposed by FAO/WHO to consider them as potential probiotics for the formulation of new foods.Fil: Gregoret, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Perezlindo, M. J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Vinderola, Celso Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Reinheimer, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; ArgentinaFil: Binetti, Ana Griselda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentin
    corecore