5,853 research outputs found

    Performance of an Operating High Energy Physics Data Grid: D0SAR-Grid

    Full text link
    The D0 experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of D0 collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in D0 by developing a grid in the D0 Southern Analysis Region (D0SAR), D0SAR-Grid, using all available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the D0SAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.Comment: 3 pages, no figures, conference proceedings of DPF04 tal

    On Forward J/\psi Production at Fermilab Tevatron

    Full text link
    The D0 Collaboration has recently reported the measurement of J/\psi production at low angle. We show here that the inclusion of color octet contributions in any framework is able to reproduce this data.Comment: 1 page, Revtex, uses epsfig.sty, 2 postscript figure

    Testing Color Evaporation in Photon-Photon Production of J/Psi at CERN LEP II

    Full text link
    The DELPHI Collaboration has recently reported the measurement of J/Psi production in photon-photon collisions at LEP II. These newly available data provide an additional proof of the importance of colored c bar{c} pairs for the production of charmonium because these data can only be explained by considering resolved photon processes. We show here that the inclusion of color octet contributions to the J/Psi production in the framework of the color evaporation model is able to reproduce this data. In particular, the transverse-momentum distribution of the J/Psi mesons is well described by this model.Comment: 10 pages, 5 Figures, Revtex

    Explaining the Higgs Decays at the LHC with an Extended Electroweak Model

    Get PDF
    We show that the recent discovery of a new boson at the LHC, which we assume to be a Higgs boson, and the observed enhancement in its diphoton decays compared to the SM prediction, can be explained by a new doublet of charged vector bosons from an extended electroweak gauge sector model with SU(3)_C\otimesSU(3)_L\otimesU(1)_X symmetry. Our results show a good agreement between our theoretical expected sensitivity to a 126--125 GeV Higgs boson and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZZZ^*, WWWW^*, bottom quarks, and tau leptons.Comment: 16 pages, 5 figure

    Soft Color Enhancement of the Production of J/psi's by Neutrinos

    Get PDF
    We calculate the production of J/psi mesons by neutrino-nucleon collisions in fixed target experiments. Soft color, often referred to as color evaporation effects, enhance production cross sections due to the contribution of color octet states. Though still small, J/\psi production may be observable in present and future experiments like NuTeV and muon colliders.Comment: 7 pages, Revtex, 4 postscript figures, uses epsfig.st
    corecore