34 research outputs found

    Effect of kinetic resonances on the stability of Resistive Wall Mode in Reversed Field Pinch

    Get PDF
    The kinetic effects, due to the mode resonance with thermal particle drift motions in the reversed field pinch (RFP) plasmas, are numerically investigated for the stability of the resistive wall mode, using a non-perturbative MHD-kinetic hybrid formulation. The kinetic effects are generally found too weak to substantially change the mode growth rate, or the stability margin, re-enforcing the fact that the ideal MHD model is rather adequate for describing the RWM physics in RFP experiments.Comment: Submitted to: Plasma Phys. Control. Fusio

    Non-linear charge reduction effect in strongly-coupled plasmas

    Full text link
    The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occuring in strongly-coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analyzed and shown to predict a strong charge reduction effect in strongly-coupled plasmas.Comment: 4 figure

    Translational toxicology in setting occupational exposure limits for dusts and hazard classification – a critical evaluation of a recent approach to translate dust overload findings from rats to humans

    Get PDF
    Background We analyze the scientific basis and methodology used by the German MAK Commission in their recommendations for exposure limits and carcinogen classification of “granular biopersistent particles without known specific toxicity” (GBS). These recommendations are under review at the European Union level. We examine the scientific assumptions in an attempt to reproduce the results. MAK’s human equivalent concentrations (HECs) are based on a particle mass and on a volumetric model in which results from rat inhalation studies are translated to derive occupational exposure limits (OELs) and a carcinogen classification. Methods We followed the methods as proposed by the MAK Commission and Pauluhn 2011. We also examined key assumptions in the metrics, such as surface area of the human lung, deposition fractions of inhaled dusts, human clearance rates; and risk of lung cancer among workers, presumed to have some potential for lung overload, the physiological condition in rats associated with an increase in lung cancer risk. Results The MAK recommendations on exposure limits for GBS have numerous incorrect assumptions that adversely affect the final results. The procedures to derive the respirable occupational exposure limit (OEL) could not be reproduced, a finding raising considerable scientific uncertainty about the reliability of the recommendations. Moreover, the scientific basis of using the rat model is confounded by the fact that rats and humans show different cellular responses to inhaled particles as demonstrated by bronchoalveolar lavage (BAL) studies in both species. Conclusion Classifying all GBS as carcinogenic to humans based on rat inhalation studies in which lung overload leads to chronic inflammation and cancer is inappropriate. Studies of workers, who have been exposed to relevant levels of dust, have not indicated an increase in lung cancer risk. Using the methods proposed by the MAK, we were unable to reproduce the OEL for GBS recommended by the Commission, but identified substantial errors in the models. Considerable shortcomings in the use of lung surface area, clearance rates, deposition fractions; as well as using the mass and volumetric metrics as opposed to the particle surface area metric limit the scientific reliability of the proposed GBS OEL and carcinogen classification.International Carbon Black Associatio

    Optimisation of Resistive Wall Mode Control in Reversed Field Pinches

    No full text
    Feedback stabilization of magnetohydrodynamic modes in reversed field pinches is analysed for a set of discrete coils driven by voltage control. It is found that the resistive wall mode can be stabilized with a very simple controller structure and with acceptable voltages in the coils. These results are obtained by using a sufficient number of active coils and either sensors for the radial field or sensors for the poloidal or toroidal field placed inside the resistive wall. The result is robust with respect to variations in the plasma equilibrium. Poloidal and toroidal sensors placed outside the wall require a more complicated controller and very high voltages, and do not allow as good control performance as internal sensors

    Optimisation of Resistive Wall Mode Control in Reversed Field Pinches

    No full text
    Feedback stabilization of magnetohydrodynamic modes in reversed field pinches is analysed for a set of discrete coils driven by voltage control. It is found that the resistive wall mode can be stabilized with a very simple controller structure and with acceptable voltages in the coils. These results are obtained by using a sufficient number of active coils and either sensors for the radial field or sensors for the poloidal or toroidal field placed inside the resistive wall. The result is robust with respect to variations in the plasma equilibrium. Poloidal and toroidal sensors placed outside the wall require a more complicated controller and very high voltages, and do not allow as good control performance as internal sensors

    A generic biokinetic model for noble gases with application to radon

    No full text
    International audienceTo facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for 222Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects. © 2013 IOP Publishing Ltd

    Dosimetric calculations for uranium miners for epidemiological studies

    No full text
    International audienceEpidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners. Published by Oxford University Press
    corecore