5 research outputs found

    Partitioning of copy-number genotypes in pedigrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) and polymorphisms (CNPs) have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in <it>Birdsuite </it>and <it>PLINK </it>for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data.</p> <p>Results</p> <p>We have developed <it>CNGen</it>, a new software for the partitioning of copy number polymorphism using the integrated genotypes from <it>Birdsuite </it>with the Affymetrix platform. The algorithm applied to familial trios or extended pedigrees can produce partitioned copy number genotypes with distinct parental alleles. We have validated the algorithm using simulations on a complex pedigree structure using frequencies calculated from a real dataset of 300 genotyped samples from 42 pedigrees segregating a congenital heart defect phenotype.</p> <p>Conclusions</p> <p><it>CNGen </it>is the first published software for the partitioning of copy number genotypes in pedigrees, making possible the use CNPs and CNVs for linkage analysis. It was implemented with the <it>Python </it>interpreter version 2.5.2. It was successfully tested on current Linux, Windows and Mac OS workstations.</p

    Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1-dependent microvascular degeneration.

    No full text
    E K-D and F S contributed equally to this workNitrative stress has an important role in microvascular degeneration leading to ischemia in conditions such as diabetic retinopathy and retinopathy of prematurity. Thus far, mediators of nitrative stress have been poorly characterized. We recently described that trans-arachidonic acids are major products of NO(2)(*)-mediated isomerization of arachidonic acid within the cell membrane, but their biological relevance is unknown. Here we show that trans-arachidonic acids are generated in a model of retinal microangiopathy in vivo in a NO(*)-dependent manner. They induce a selective time- and concentration-dependent apoptosis of microvascular endothelial cells in vitro, and result in retinal microvascular degeneration ex vivo and in vivo. These effects are mediated by an upregulation of the antiangiogenic factor thrombospondin-1, independently of classical arachidonic acid metabolism. Our findings provide new insight into the molecular mechanisms of nitrative stress in microvascular injury and suggest new therapeutic avenues in the management of disorders involving nitrative stress, such as ischemic retinopathies and encephalopathies
    corecore