9,076 research outputs found
Bomb radiocarbon and tag-recapture dating of sandbar shark (Carcharhinus plumbeus)
The sandbar shark (Carcharhinus plumbeus) was the cornerstone species of western North Atlantic and Gulf of Mexico large coastal shark fisheries until 2008 when they
were allocated to a research-only fishery. Despite decades of fishing on this species, important life history
parameters, such as age and growth, have not been well known. Some validated age and growth information exists for sandbar shark, but more comprehensive life history information is needed. The complementary application of bomb radiocarbon and tag-recapture dating was used in this
study to determine valid age-estimation criteria and longevity estimates for this species. These two methods
indicated that current age interpretations based on counts of growth bands in vertebrae are accurate to 10 or 12 years. Beyond these years, we could not determine with certainty when such an underestimation of age begins; however, bomb radiocarbon and tag-recapture data indicated that large adult sharks were considerably older than the estimates derived from counts of growth bands. Three adult sandbar sharks were 20 to 26 years old based on bomb radiocarbon results and were a 5- to 11-year increase over the previous age estimates for these sharks. In support of
these findings, the tag-recapture data provided results that were consistent with bomb radiocarbon dating and
further supported a longevity that exceeds 30 years for this species
Continuous phase stabilization and active interferometer control using two modes
We present a computer-based active interferometer stabilization method that
can be set to an arbitrary phase difference and does not rely on modulation of
the interfering beams. The scheme utilizes two orthogonal modes propagating
through the interferometer with a constant phase difference between them to
extract a common phase and generate a linear feedback signal. Switching times
of 50ms over a range of 0 to 6 pi radians at 632.8nm are experimentally
demonstrated. The phase can be stabilized up to several days to within 3
degrees.Comment: 3 pages, 2 figure
Nitrogen isotope abundance measurements
The abundance of the nitrogen isotopes in several sources of nitrogen have been determined. In atmospheric nitrogen the absolute ratio, N14/N15, is 272.0 ± 0.3. Small variations were observed for various sources of compressed gas but the isotopic composition of the nitrogen isotopes of the atmosphere was constant, to 1 part in 7000, in samples collected at different geographical sites and altitudes above these sites
On the iterated Crank-Nicolson for hyperbolic and parabolic equations in numerical relativity
The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used
in numerical relativity for the solution of both hyperbolic and parabolic
partial differential equations. We here extend the recent work on the stability
of this scheme for hyperbolic equations by investigating the properties when
the average between the predicted and corrected values is made with unequal
weights and when the scheme is applied to a parabolic equation. We also propose
a variant of the scheme in which the coefficients in the averages are swapped
between two corrections leading to systematically larger amplification factors
and to a smaller numerical dispersion.Comment: 7 pages, 3 figure
Deep-time climate legacies affect origination rates of marine genera
Biodiversity dynamics are shaped by a complex interplay between current conditions and historic legacy. The interaction of short- and long-term climate change may mask the true relationship of evolutionary responses to climate change if not specifically accounted for. These paleoclimate interactions have been demonstrated for extinction risk and biodiversity change, but their importance for origination dynamics remains untested. Here, we show that origination probability in marine fossil genera is strongly affected by paleoclimate interactions. Overall, origination probability increases by 27.8% [95% CI (27.4%, 28.3%)] when a short-term cooling adds to a long-term cooling trend. This large effect is consistent through time and all studied groups. The mechanisms of the detected effect might be manifold but are likely connected to increased allopatric speciation with eustatic sea level drop caused by sustained global cooling. We tested this potential mechanism through which paleoclimate interactions can act on origination rates by additionally examining a proxy for habitat fragmentation. This proxy, continental fragmentation, has a similar effect on origination rates as paleoclimate interactions, supporting the importance of allopatric speciation through habitat fragmentation in the deep-time fossil record. The identified complex nature of paleoclimate interactions might explain contradictory conclusions on the relationship between temperature and origination in the previous literature. Our results highlight the need to account for complex interactions in evolutionary studies both between and among biotic and abiotic factors
Mittelalterliche Pflanzenreste aus Kelheim - Speisezettel und Umweltbedingungen in Rekonstruktion
1984 wurde bei der Ausgrabung auf dem Gelände des alten Knabenschulhauses, südlich der Stadtpfarrkirche St.-Mariä-Himmelfahrt, ein Brunnen aufgefunden, der eine Unmenge verschiedenster Speisereste des mittelalterlichen Menschen in Kelheim enthielt. Es fanden sich Eierschalen, Krebsreste, Tierknochen, Fischgräten, Hasen-Kotballen und insgesamt wohl 500 000 Früchte und Samen.
Eine Auswertung der Pflanzenreste ergab folgendes:
Es lassen sich viele Wald- und Wiesenpflanzen feststellen, aber vor allem auch Kulturpflanzen wie Kirschen, Wein etc. Es können auf diese Weise die ökologischen und ökonomischen Bedingungen der Zeit des Mittelalters ganz gut gefaßt werden. Vor allem Stein-, Kern- und Beerenobst wurde zu dieser Zeit extensiv verwendet - der Weinbau war offensichtlich stark begünstigt. Als vermutliches Alter der Funde wird ein Zeitraum vor 1600 und nach 1200 angenommen (ohne archäologische Auswertung)
Long Distance Transport of Ultracold Atoms using a 1D optical lattice
We study the horizontal transport of ultracold atoms over macroscopic
distances of up to 20 cm with a moving 1D optical lattice. By using an optical
Bessel beam to form the optical lattice, we can achieve nearly homogeneous
trapping conditions over the full transport length, which is crucial in order
to hold the atoms against gravity for such a wide range. Fast transport
velocities of up to 6 m/s (corresponding to about 1100 photon recoils) and
accelerations of up to 2600 m/s2 are reached. Even at high velocities the
momentum of the atoms is precisely defined with an uncertainty of less than one
photon recoil. This allows for construction of an atom catapult with high
kinetic energy resolution, which might have applications in novel collision
experiments.Comment: 15 pages, 8 figure
The modular S-matrix as order parameter for topological phase transitions
We study topological phase transitions in discrete gauge theories in two
spatial dimensions induced by the formation of a Bose condensate. We analyse a
general class of euclidean lattice actions for these theories which contain one
coupling constant for each conjugacy class of the gauge group. To probe the
phase structure we use a complete set of open and closed anyonic string
operators. The open strings allow one to determine the particle content of the
condensate, whereas the closed strings enable us to determine the matrix
elements of the modular -matrix, also in the broken phase. From the measured
broken -matrix we may read off the sectors that split or get identified in
the broken phase, as well as the sectors that are confined. In this sense the
modular -matrix can be employed as a matrix valued non-local order parameter
from which the low-energy effective theories that occur in different regions of
parameter space can be fully determined.
To verify our predictions we studied a non-abelian anyon model based on the
quaternion group of order eight by Monte Carlo simulation. We
probe part of the phase diagram for the pure gauge theory and find a variety of
phases with magnetic condensates leading to various forms of (partial)
confinement in complete agreement with the algebraic breaking analysis. Also
the order of various transitions is established.Comment: 37 page
Experimental Quantum Cryptography with Qutrits
We produce two identical keys using, for the first time, entangled trinary
quantum systems (qutrits) for quantum key distribution. The advantage of
qutrits over the normally used binary quantum systems is an increased coding
density and a higher security margin. The qutrits are encoded into the orbital
angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal
index l +1, 0 and -1, respectively. The orbital angular momentum is controlled
with phase holograms. In an Ekert-type protocol the violation of a
three-dimensional Bell inequality verifies the security of the generated keys.
A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to
the manuscrip
- …