9,076 research outputs found

    Bomb radiocarbon and tag-recapture dating of sandbar shark (Carcharhinus plumbeus)

    Get PDF
    The sandbar shark (Carcharhinus plumbeus) was the cornerstone species of western North Atlantic and Gulf of Mexico large coastal shark fisheries until 2008 when they were allocated to a research-only fishery. Despite decades of fishing on this species, important life history parameters, such as age and growth, have not been well known. Some validated age and growth information exists for sandbar shark, but more comprehensive life history information is needed. The complementary application of bomb radiocarbon and tag-recapture dating was used in this study to determine valid age-estimation criteria and longevity estimates for this species. These two methods indicated that current age interpretations based on counts of growth bands in vertebrae are accurate to 10 or 12 years. Beyond these years, we could not determine with certainty when such an underestimation of age begins; however, bomb radiocarbon and tag-recapture data indicated that large adult sharks were considerably older than the estimates derived from counts of growth bands. Three adult sandbar sharks were 20 to 26 years old based on bomb radiocarbon results and were a 5- to 11-year increase over the previous age estimates for these sharks. In support of these findings, the tag-recapture data provided results that were consistent with bomb radiocarbon dating and further supported a longevity that exceeds 30 years for this species

    Continuous phase stabilization and active interferometer control using two modes

    Full text link
    We present a computer-based active interferometer stabilization method that can be set to an arbitrary phase difference and does not rely on modulation of the interfering beams. The scheme utilizes two orthogonal modes propagating through the interferometer with a constant phase difference between them to extract a common phase and generate a linear feedback signal. Switching times of 50ms over a range of 0 to 6 pi radians at 632.8nm are experimentally demonstrated. The phase can be stabilized up to several days to within 3 degrees.Comment: 3 pages, 2 figure

    Nitrogen isotope abundance measurements

    Get PDF
    The abundance of the nitrogen isotopes in several sources of nitrogen have been determined. In atmospheric nitrogen the absolute ratio, N14/N15, is 272.0 ± 0.3. Small variations were observed for various sources of compressed gas but the isotopic composition of the nitrogen isotopes of the atmosphere was constant, to 1 part in 7000, in samples collected at different geographical sites and altitudes above these sites

    On the iterated Crank-Nicolson for hyperbolic and parabolic equations in numerical relativity

    Full text link
    The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion.Comment: 7 pages, 3 figure

    Deep-time climate legacies affect origination rates of marine genera

    Get PDF
    Biodiversity dynamics are shaped by a complex interplay between current conditions and historic legacy. The interaction of short- and long-term climate change may mask the true relationship of evolutionary responses to climate change if not specifically accounted for. These paleoclimate interactions have been demonstrated for extinction risk and biodiversity change, but their importance for origination dynamics remains untested. Here, we show that origination probability in marine fossil genera is strongly affected by paleoclimate interactions. Overall, origination probability increases by 27.8% [95% CI (27.4%, 28.3%)] when a short-term cooling adds to a long-term cooling trend. This large effect is consistent through time and all studied groups. The mechanisms of the detected effect might be manifold but are likely connected to increased allopatric speciation with eustatic sea level drop caused by sustained global cooling. We tested this potential mechanism through which paleoclimate interactions can act on origination rates by additionally examining a proxy for habitat fragmentation. This proxy, continental fragmentation, has a similar effect on origination rates as paleoclimate interactions, supporting the importance of allopatric speciation through habitat fragmentation in the deep-time fossil record. The identified complex nature of paleoclimate interactions might explain contradictory conclusions on the relationship between temperature and origination in the previous literature. Our results highlight the need to account for complex interactions in evolutionary studies both between and among biotic and abiotic factors

    Mittelalterliche Pflanzenreste aus Kelheim - Speisezettel und Umweltbedingungen in Rekonstruktion

    Get PDF
    1984 wurde bei der Ausgrabung auf dem Gelände des alten Knabenschulhauses, südlich der Stadtpfarrkirche St.-Mariä-Himmelfahrt, ein Brunnen aufgefunden, der eine Unmenge ver­schiedenster Speisereste des mittelalterlichen Menschen in Kelheim enthielt. Es fanden sich Eierschalen, Krebsreste, Tierknochen, Fischgräten, Hasen-Kotballen und insgesamt wohl 500 000 Früchte und Samen. Eine Auswertung der Pflanzenreste ergab folgendes: Es lassen sich viele Wald- und Wiesenpflanzen feststellen, aber vor allem auch Kultur­pflanzen wie Kirschen, Wein etc. Es können auf diese Weise die ökologischen und ökonomi­schen Bedingungen der Zeit des Mittelalters ganz gut gefaßt werden. Vor allem Stein-, Kern- und Beerenobst wurde zu dieser Zeit extensiv verwendet - der Weinbau war offen­sichtlich stark begünstigt. Als vermutliches Alter der Funde wird ein Zeitraum vor 1600 und nach 1200 angenommen (ohne archäologische Auswertung)

    Long Distance Transport of Ultracold Atoms using a 1D optical lattice

    Full text link
    We study the horizontal transport of ultracold atoms over macroscopic distances of up to 20 cm with a moving 1D optical lattice. By using an optical Bessel beam to form the optical lattice, we can achieve nearly homogeneous trapping conditions over the full transport length, which is crucial in order to hold the atoms against gravity for such a wide range. Fast transport velocities of up to 6 m/s (corresponding to about 1100 photon recoils) and accelerations of up to 2600 m/s2 are reached. Even at high velocities the momentum of the atoms is precisely defined with an uncertainty of less than one photon recoil. This allows for construction of an atom catapult with high kinetic energy resolution, which might have applications in novel collision experiments.Comment: 15 pages, 8 figure

    The modular S-matrix as order parameter for topological phase transitions

    Get PDF
    We study topological phase transitions in discrete gauge theories in two spatial dimensions induced by the formation of a Bose condensate. We analyse a general class of euclidean lattice actions for these theories which contain one coupling constant for each conjugacy class of the gauge group. To probe the phase structure we use a complete set of open and closed anyonic string operators. The open strings allow one to determine the particle content of the condensate, whereas the closed strings enable us to determine the matrix elements of the modular SS-matrix, also in the broken phase. From the measured broken SS-matrix we may read off the sectors that split or get identified in the broken phase, as well as the sectors that are confined. In this sense the modular SS-matrix can be employed as a matrix valued non-local order parameter from which the low-energy effective theories that occur in different regions of parameter space can be fully determined. To verify our predictions we studied a non-abelian anyon model based on the quaternion group H=D2ˉH=\bar{D_2} of order eight by Monte Carlo simulation. We probe part of the phase diagram for the pure gauge theory and find a variety of phases with magnetic condensates leading to various forms of (partial) confinement in complete agreement with the algebraic breaking analysis. Also the order of various transitions is established.Comment: 37 page

    Experimental Quantum Cryptography with Qutrits

    Full text link
    We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution. The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin. The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal index l +1, 0 and -1, respectively. The orbital angular momentum is controlled with phase holograms. In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys. A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to the manuscrip
    corecore