130 research outputs found

    Augmented Symbolic Execution for Information Flow in Hardware Designs

    Full text link
    We present SEIF, a methodology that combines static analysis with symbolic execution to verify and explicate information flow paths in a hardware design. SEIF begins with a statically built model of the information flow through a design and uses guided symbolic execution to recognize and eliminate non-flows with high precision or to find corresponding paths through the design state for true flows. We evaluate SEIF on two open-source CPUs, an AES core, and the AKER access control module. SEIF can exhaustively explore 10-12 clock cycles deep in 4-6 seconds on average, and can automatically account for 86-90% of the paths in the statically built model. Additionally, SEIF can be used to find multiple violating paths for security properties, providing a new angle for security verification

    Replication of Kipnis' "Does power corrupt?"

    Get PDF
    1 online resource (33 p.) : col. ill.Includes abstract and appendices.Includes bibliographical references (p. 17-19).In 1972, David Kipnis conducted an experimental study where participants (28 MBA students) acted as supervisors for a simulated task. Half of the participants were told they had a number of institutional powers to employ when motivating their subordinate; the others were not given these instructions. What was found was that not only did almost all of those participants told they could use these powers use them, their opinion of their own performance and that of their subordinates was greatly affected by this priming. The purpose of this pilot study was to explore whether the results of Kipnis’ study would apply today, and whether his choice of participants (MBA students) could have impacted his results. In contrast to Kipnis’ research, in this study, across 28 leadership attempts, participants were very unlikely to use power under any condition (only one-in-twelve without power and one-in-sixteen with power). If these findings are supported in a larger sample they suggest that norms around managing have changed and the blatant use of power is less acceptable. While there were no easily apparent differences between the groups (MBA or IDS) or conditions (power or no-power) in their opinion of their own performance or that of their subordinates, we did observe other interesting results: 1) IDS students were considerably more likely to question the study and the scales than the MBA participants, and 2) considerable incentives may be necessary in our time-crunched society to get participants for this type of labour intensive research

    Discretizing Gravity in Warped Spacetime

    Full text link
    We investigate the discretized version of the compact Randall-Sundrum model. By studying the mass eigenstates of the lattice theory, we demonstrate that for warped space, unlike for flat space, the strong coupling scale does not depend on the IR scale and lattice size. However, strong coupling does prevent us from taking the continuum limit of the lattice theory. Nonetheless, the lattice theory works in the manifestly holographic regime and successfully reproduces the most significant features of the warped theory. It is even in some respects better than the KK theory, which must be carefully regulated to obtain the correct physical results. Because it is easier to construct lattice theories than to find exact solutions to GR, we expect lattice gravity to be a useful tool for exploring field theory in curved space.Comment: 17 pages, 4 figures; references adde

    CheckOut: User-Controlled Anonymization for Customer Loyalty Programs

    Get PDF
    To resist the regimes of ubiquitous surveillance imposed upon us in every facet of modern life, we need technological tools that subvert surveillance systems. Unfortunately, while cryptographic tools frequently demonstrate how we can construct systems that safeguard user privacy, there is limited motivation for corporate entities engaged in surveillance to adopt these tools, as they often clash with profit incentives. This paper demonstrates how, in one particular aspect of everyday life -- customer loyalty programs -- users can subvert surveillance and attain anonymity, without necessitating any cooperation or modification in the behavior of their surveillors. We present the CheckOut system, which allows users to coordinate large anonymity sets of shoppers to hide the identity and purchasing habits of each particular user in the crowd. CheckOut scales up and systematizes past efforts to subvert loyalty surveillance, which have been primarily ad-hoc and manual affairs where customers physically swap loyalty cards to mask their real identities. CheckOut allows increased scale while ensuring that the necessary computing infrastructure does not itself become a new centralized point of privacy failure. Of particular importance to our scheme is a protocol for loyalty programs that offer reward points, where we demonstrate how CheckOut can assist users in paying each other back for loyalty points accrued while using each others\u27 loyalty accounts. We present two different mechanisms to facilitate redistributing rewards points, offering trade-offs in functionality, performance, and security

    Supporting interoperable interpolation: the INTAMAP approach

    Get PDF
    In many Environmental Information Systems the actual observations arise from a discrete monitoring network which might be rather heterogeneous in both location and types of measurements made. In this paper we describe the architecture and infrastructure for a system, developed as part of the EU FP6 funded INTAMAP project, to provide a service oriented solution that allows the construction of an interoperable, automatic, interpolation system. This system will be based on the Open Geospatial Consortium’s Web Feature Service (WFS) standard. The essence of our approach is to extend the GML3.1 observation feature to include information about the sensor using SensorML, and to further extend this to incorporate observation error characteristics. Our extended WFS will accept observations, and will store them in a database. The observations will be passed to our R-based interpolation server, which will use a range of methods, including a novel sparse, sequential kriging method (only briefly described here) to produce an internal representation of the interpolated field resulting from the observations currently uploaded to the system. The extended WFS will then accept queries, such as ‘What is the probability distribution of the desired variable at a given point’, ‘What is the mean value over a given region’, or ‘What is the probability of exceeding a certain threshold at a given location’. To support information-rich transfer of complex and uncertain predictions we are developing schema to represent probabilistic results in a GML3.1 (object-property) style. The system will also offer more easily accessible Web Map Service and Web Coverage Service interfaces to allow users to access the system at the level of complexity they require for their specific application. Such a system will offer a very valuable contribution to the next generation of Environmental Information Systems in the context of real time mapping for monitoring and security, particularly for systems that employ a service oriented architecture

    Massive Supergravity and Deconstruction

    Full text link
    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various quantum effects which generate non-local operators in theory space. As an example, we show that the single massive supergravity multiplet in a 2-site model can serve the function of an extra dimension in anomaly mediation.Comment: 24 pages, 2 figures, some color. Typos fixed and refs added in v

    An Operando Investigation of (Ni-Fe-Co-Ce)O_x System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction

    Get PDF
    The oxygen evolution reaction (OER) is a critical component of industrial processes such as electrowinning of metals and the chlor-alkali process. It also plays a central role in the developing renewable energy field of solar-fuels generation by providing both the protons and electrons needed to generate fuels such as H_2 or reduced hydrocarbons from CO_2. To improve these processes, it is necessary to expand the fundamental understanding of catalytically active species at low overpotential, which will further the development of novel electrocatalysts with high activity and durability. In this context, performing experimental investigations of the electrocatalysts under realistic working regimes, i.e. under operando conditions, is of crucial importance. Here, we study a highly active quinary transition metal oxide-based OER electrocatalyst by means of operando ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy performed at the solid/liquid interface. We observe that the catalyst undergoes a clear chemical-structural evolution as a function of the applied potential with Ni, Fe and Co oxy-hydroxides comprising the active catalytic species. While CeO_2 is redox inactive under catalytic conditions, its influence on the redox processes of the transition metals boosts the catalytic activity at low overpotentials, introducing an important design principle for the optimization of electrocatalysts and tailoring of novel materials

    A machine-checked proof of security for AWS key management service

    Get PDF
    We present a machine-checked proof of security for the domain management protocol of Amazon Web Services' KMS (Key Management Service) a critical security service used throughout AWS and by AWS customers. Domain management is at the core of AWS KMS; it governs the top-level keys that anchor the security of encryption services at AWS. We show that the protocol securely implements an ideal distributed encryption mechanism under standard cryptographic assumptions. The proof is machine-checked in the EasyCrypt proof assistant and is the largest EasyCrypt development to date.Manuel Barbosa was supported by grant SFRH/BSAB/143018/2018 awarded by the Portuguese Foundation for Science and Technology (FCT). Vitor Pereira was supported by grant FCT-PD/BD/113967/201 awarded by FCT. This work was partially funded by national funds via FCT in the context of project PTDC/CCI-INF/31698/2017

    Study of LHC Searches for a Lepton and Many Jets

    Full text link
    Searches for new physics in high-multiplicity events with little or no missing energy are an important component of the LHC program, complementary to analyses that rely on missing energy. We consider the potential reach of searches for events with a lepton and six or more jets, and show they can provide increased sensitivity to many supersymmetric and exotic models that would not be detected through standard missing-energy analyses. Among these are supersymmetric models with gauge mediation, R-parity violation, and light hidden sectors. Moreover, ATLAS and CMS measurements suggest the primary background in this channel is from t-tbar, rather than W+jets or QCD, which reduces the complexity of background modeling necessary for such a search. We also comment on related searches where the lepton is replaced with another visible object, such as a Z boson.Comment: 23 pages, 12 figures, 1 tabl
    • 

    corecore