702 research outputs found

    Interaction of GABA and Excitatory Amino Acids in the Basolateral Amygdala: Role in Cardiovascular Regulation

    Get PDF
    Activation of the amygdala in rats produces cardiovascular changes that include increases in heart rate and arterial pressure as well as behavioral changes characteristic of emotional arousal. The objective of the present study was to examine the interaction of GABA and excitatory amino acid (EAA) receptors in the basolateral amygdala (BLA) in regulating cardiovascular function. Microinjection of the GABAA receptor antagonist bicuculline methiodide (BMI) or the E A A receptor agonists NMDA or AMPA into the same region of the BLA of conscious rats produced dose-related increases in heart rate and arterial pressure. Injection of the nonselective EAA receptor antagonist kynurenic acid into the BLA prevented or reversed the cardiovascular changes caused by local injection of BMI or the noncompetitive GABA antagonist picrotoxin. Conversely, local pretreatment with the glutamate reuptake inhibitorl-trans-pyrrolidine-2,4-dicarboxylic acid enhanced the effects of intra-amygdalar injection of BMI. The cardiovascular effects of BMI were also attenuated by injection of either the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) or the AMPA receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX). When these two EAA receptor antagonists were combined, their ability to suppress BMI-induced tachycardic and pressor responses was additive. These findings indicate that the cardiovascular effects caused by blockade of GABAergic inhibition in the BLA of the rat are dependent on activation of local NMDA and AMPA receptors

    Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion

    Full text link
    Underactuation is ubiquitous in human locomotion and should be ubiquitous in bipedal robotic locomotion as well. This chapter presents a coherent theory for the design of feedback controllers that achieve stable walking gaits in underactuated bipedal robots. Two fundamental tools are introduced, virtual constraints and hybrid zero dynamics. Virtual constraints are relations on the state variables of a mechanical model that are imposed through a time-invariant feedback controller. One of their roles is to synchronize the robot's joints to an internal gait phasing variable. A second role is to induce a low dimensional system, the zero dynamics, that captures the underactuated aspects of a robot's model, without any approximations. To enhance intuition, the relation between physical constraints and virtual constraints is first established. From here, the hybrid zero dynamics of an underactuated bipedal model is developed, and its fundamental role in the design of asymptotically stable walking motions is established. The chapter includes numerous references to robots on which the highlighted techniques have been implemented.Comment: 17 pages, 4 figures, bookchapte

    What Determines the Depth of BALs? Keck HIRES Observations of BALQSO 1603+300

    Full text link
    We find that the depth and shape of the broad absorption lines (BALs) in BALQSO 1603+3002 are determined largely by the fraction of the emitting source which is covered by the BAL flow. In addition, the observed depth of the BALs is poorly correlated with their real optical depth. The implication of this result is that abundance studies based on direct extraction of column densities from the depth of the absorption troughs are unreliable. Our conclusion is based on analysis of unblended absorption features of two lines from the same ion (in this case the Si IV doublet), which allows unambiguous separation of covering factor and optical depth effects. The complex morphology of the covering factor as a function of velocity suggests that the BALs are produced by several physically separated outflows. The covering factor is ion dependent in both depth and velocity width. We also find evidence that in BALQSO 1603+3002 the flow does not cover the broad emission line region.Comment: 13 pages, 2 figures, accepted for publication in Ap

    The Evolution of Quasar CIV and SiIV Broad Absorption Lines Over Multi-Year Time Scales

    Full text link
    We investigate the variability of CIV 1549A broad absorption line (BAL) troughs over rest-frame time scales of up to ~7 yr in 14 quasars at redshifts z>2.1. For 9 sources at sufficiently high redshift, we also compare CIV and SiIV 1400A absorption variation. We compare shorter- and longer-term variability using spectra from up to four different epochs per source and find complex patterns of variation in the sample overall. The scatter in the change of absorption equivalent width (EW), Delta EW, increases with the time between observations. BALs do not, in general, strengthen or weaken monotonically, and variation observed over shorter (<months) time scales is not predictive of multi-year variation. We find no evidence for asymmetry in the distribution of Delta EW that would indicate that BALs form and decay on different time scales, and we constrain the typical BAL lifetime to be >~30 yr. The BAL absorption for one source, LBQS 0022+0150, has weakened and may now be classified as a mini-BAL. Another source, 1235+1453, shows evidence of variable, blue continuum emission that is relatively unabsorbed by the BAL outflow. CIV and SiIV BAL shape changes are related in at least some sources. Given their high velocities, BAL outflows apparently traverse large spatial regions and may interact with parsec-scale structures such as an obscuring torus. Assuming BAL outflows are launched from a rotating accretion disk, notable azimuthal symmetry is required in the outflow to explain the relatively small changes observed in velocity structure over times up to 7 yr

    Real-time analysis and display of quantitative measures to track and improve clinical workflow

    Get PDF
    PURPOSE: Radiotherapy treatment planning is a complex process with multiple, dependent steps involving an interdisciplinary patient care team. Effective communication and real-time tracking of resources and care path activities are key for clinical efficiency and patient safety. MATERIALS AND METHODS: We designed and implemented a secure, interactive web-based dashboard for patient care path, clinical workflow, and resource utilization management. The dashboard enables visualization of resource utilization and tracks progress in a patient\u27s care path from the time of acquisition of the planning CT to the time of treatment in real-time. It integrates with the departmental electronic medical records (EMR) system without the creation and maintenance of a separate database or duplication of work by clinical staff. Performance measures of workflow were calculated. RESULTS: The dashboard implements a standardized clinical workflow and dynamically consolidates real-time information queried from multiple tables in the EMR database over the following views: (1) CT Sims summarizes patient appointment information on the CT simulator and patient load; (2) Linac Sims summarizes patient appointment times, setup history, and notes, and patient load; (3) Task Status lists the clinical tasks associated with a treatment plan, their due date, status and ownership, and patient appointment details; (4) Documents provides the status of all documents in the patients\u27 charts; and (5) Diagnoses and Interventions summarizes prescription information, imaging instructions and whether the plan was approved for treatment. Real-time assessment and quantification of progress and delays in a patient\u27s treatment start were achieved. CONCLUSIONS: This study indicates it is feasible to develop and implement a dashboard, tailored to the needs of an interdisciplinary team, which derives and integrates information from the EMR database for real-time analysis and display of resource utilization and clinical workflow in radiation oncology. The framework developed facilitates informed, data-driven decisions on clinical workflow management as we seek to optimize clinical efficiency and patient safety

    Sex Differences in the Management and Outcomes of Heart Failure with Preserved Ejection Fraction in Patients Presenting to the Emergency Department with Acute Heart Failure

    Get PDF
    Background Heart failure (HF) with preserved ejection fraction (HFpEF) is more common in women than in men; data characterizing sex differences in the management and outcomes of HFpEF patients presenting to the emergency department (ED) are limited. Methods and Results Using Acute Decompensated Heart Failure National Registry Emergency Module data linked to Medicare claims, we conducted a retrospective analysis of acute HF patients in the ED, identifying HFpEF (ejection fraction [EF] ≄40%) patients and stratifying by sex to compare baseline characteristics, ED therapies, hospital length of stay (LOS), in-hospital mortality, and post-discharge outcomes. Of 4161 HFpEF patients, 2808 (67%) were women, who were more likely to be older and hypertensive, but less likely to be diabetic or smokers (all P 140 mm Hg (62.5% vs 56.4%; P = .0001) and higher EF. There were no sex differences in ED therapies, adjusted 30- and 180-day all-cause mortality, in-hospital mortality, or 30- and 180-day readmissions. After adjustment, women had longer LOS (0.40 days, 95% confidence interval [CI] 0.10–0.70; P = .008). Conclusions Women with HFpEF presenting to the ED were more likely to have elevated systolic blood pressure, but overall ED management strategies were similar to those in men. We observed adjusted differences in hospital LOS, but no differences in 30- and 180-day outcomes
    • 

    corecore