21 research outputs found

    Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment

    Full text link
    Automated data-driven decision making systems are increasingly being used to assist, or even replace humans in many settings. These systems function by learning from historical decisions, often taken by humans. In order to maximize the utility of these systems (or, classifiers), their training involves minimizing the errors (or, misclassifications) over the given historical data. However, it is quite possible that the optimally trained classifier makes decisions for people belonging to different social groups with different misclassification rates (e.g., misclassification rates for females are higher than for males), thereby placing these groups at an unfair disadvantage. To account for and avoid such unfairness, in this paper, we introduce a new notion of unfairness, disparate mistreatment, which is defined in terms of misclassification rates. We then propose intuitive measures of disparate mistreatment for decision boundary-based classifiers, which can be easily incorporated into their formulation as convex-concave constraints. Experiments on synthetic as well as real world datasets show that our methodology is effective at avoiding disparate mistreatment, often at a small cost in terms of accuracy.Comment: To appear in Proceedings of the 26th International World Wide Web Conference (WWW), 2017. Code available at: https://github.com/mbilalzafar/fair-classificatio

    Remarkable resilience of forest structure and biodiversity following fire in the peri-urban bushland of Sydney, Australia

    Get PDF
    In rapidly urbanizing areas, natural vegetation becomes fragmented, making conservation planning challenging, particularly as climate change accelerates fire risk. We studied urban forest fragments in two threatened eucalypt‐dominated (scribbly gum woodland, SGW, and ironbark forest, IF) communities across ~2000 ha near Sydney, Australia, to evaluate effects of fire frequency (0– 4 in last 25 years) and time since fire (0.5 to >25 years) on canopy structure, habitat quality and biodiversity (e.g., species richness). Airborne lidar was used to assess canopy height and density, and ground‐based surveys of 148 (400 m2) plots measured leaf area index (LAI), plant species com‐ position and habitat metrics such as litter cover and hollow‐bearing trees. LAI, canopy density, litter, and microbiotic soil crust increased with time since fire in both communities, while tree and mistletoe cover increased in IF. Unexpectedly, plant species richness increased with fire frequency, owing to increased shrub richness which offset decreased tree richness in both communities. These findings indicate biodiversity and canopy structure are generally resilient to a range of times since fire and fire frequencies across this study area. Nevertheless, reduced arboreal habitat quality and subtle shifts in community composition of resprouters and obligate seeders signal early concern for a scenario of increasing fire frequency under climate change. Ongoing assessment of fire responses is needed to ensure that biodiversity, canopy structure and ecosystem function are maintained in the remaining fragments of urban forests under future climate change which will likely drive hotter and more frequent fires
    corecore