25 research outputs found

    Aminoglycoside-induced hearing loss: South Africans at risk

    Get PDF
    South Africa is currently experiencing a TB epidemic with an estimated incidence of 940/100 000 population/year, and the country has been ranked 4th among the 22 high-burden TB countries worldwide by the World Health Organization (WHO). A potentially devastating threat to TB control is the emergence of multidrug-resistant TB (MDR-TB) and, more recently, extensively drug-resistant TB (XDR-TB), mainly as a result of poor drug adherence by TB patients and incorrect management or treatment regimens by health providers; however, direct transmission of drug-resistant strains also plays an important role. The MDR/XDR-TB strains necessitate prolonged chemotherapy for up to 2 years or more, and the use of more toxic second-line drugs including the aminoglycoside (streptomycin, kanamycin and amikacin) and polypeptide (capreomycin) antibiotics. In South Africa, in accordance with WHO guidelines, streptomycin is used for retreatment of TB while kanamycin, amikacin and capreomycin are used to treat MDR/XDR-TB

    Aminoglycoside-induced hearing loss in HIV-positive and HIV-negative multidrug-resistant tuberculosis patients

    Get PDF
    Background. Ototoxicity following aminoglycoside treatment for multidrug-resistant tuberculosis (MDR-TB) is a significant problem. This study documents the incidence of ototoxicity in HIV-positive and HIV-negative patients with MDR-TB and presents clinical guidelines relating to ototoxicity. Methods. A prospective cohort study of 153 MDR-TB patients with normal hearing and middle ear status at baseline controlling for 6 mitochondrial mutations associated with aminoglycoside-related ototoxicity, at Brooklyn Chest Hospital in Cape Town. Pure tone audiometry was performed monthly for 3 months to determine hearing loss. HIV status was recorded, as was the presence of 6 mutations in the MT-RNR1 gene. Results. Fifty-seven per cent developed high-frequency hearing loss. HIV-positive patients (70%) were more likely to develop hearing loss than HIV-negative patients (42%). Of 115 patients who were genetically screened, none had MT-RNR1 mutations. Conclusion. Ototoxic hearing loss is common in MDR-TB patients treated with aminoglycosides. HIV-positive patients are at increased risk of ototoxicity. Auditory monitoring and auditory rehabilitation should be an integral part of the package of care of MDR-TB patients

    Chromosome 22q11 in a Xhosa schizophrenia population

    Get PDF
    Chromosome 22q11 aberrations substantially increase the risk for developing schizophrenia. Although micro-deletions in this region have been extensively investigated in different populations across the world, little is known of their prevalence in African subjects with schizophrenia. We screened 110 African Xhosa-speaking participants with schizophrenia for the presence of micro-deletions. As further verification for the presence or absence of 22q11 microdeletions, we screened 238 Xhosa schizophrenia patients and 240 healthy Xhosa individuals from a larger schizophrenia candidate 22q11 gene study using molecular analyses. Data from molecular and cytogenetic analyses confirmed the absence of 22q11 microdeletions in the Xhosa schizophrenia samples. Although the absence of chromosome 22q11 micro-deletions in this group of patients does not exclude the possibility that it may occur in Xhosa schizophrenia patients, we concluded an extremely low prevalence. Our findings suggest that unique susceptibility loci may be present in this group

    Morphological features in a Xhosa schizophrenia population

    Get PDF
    BACKGROUND: Demonstrating an association between physical malformation and schizophrenia could be considered supportive of a neurodevelopmental origin of schizophrenia and may offer insights into a critical period for the development of this illness. The aim of our study was to investigate whether differences in the presence of minor physical anomalies could be demonstrated between schizophrenia sufferers and normal controls in a Xhosa population with a view to identifying a means of subtyping schizophrenia for use in future genetic studies. METHODS: Sixty-three subjects with schizophrenia (21 sibling pairs, 1 sibship of four and a group of probands with an affected non-participating sibling (n = 17)), 81 normal controls (37 singletons and 22 sibling pairs) of Xhosa ethnicity were recruited. Each participant was then examined for minor physical anomalies using the Modified Waldrop scale. The relationship between each of the morphological features and the presence of an affected sib was examined using the Chi-squared test, followed by an intra-pair concordance analysis in the sibling pairs. RESULTS: Gap between first and second toes was significantly more common in the affected sib pair group when compared to the non-affected sib pair group (p = 0.019) and non-affected singleton control group (p = 0.013). Concordance analysis also revealed increased concordance for this item in the affected sib pair group. CONCLUSION: These findings offer an intriguing possibility that in the Xhosa population, affected sib pair status may be linked to a neurodevelopmental insult during a specific period of the fetal developmental

    Comparing the Efficacy of Bevacizumab and Ranibizumab in Patients with Retinal Vein Occlusion:The Bevacizumab to Ranibizumab in Retinal Vein Occlusions (BRVO) study, a Randomized Trial

    Get PDF
    PURPOSE: Comparing the efficacy of intravitreal injections of bevacizumab to ranibizumab in the treatment of macular edema (ME) resulting from retinal vein occlusion (RVO). DESIGN: Comparative, randomized, double-masked, multicenter, noninferiority clinical trial. The noninferiority margin was 4 letters. PARTICIPANTS: Patients with vision loss resulting from ME secondary to a branch or (hemi) central RVO who might benefit from anti-vascular endothelial growth factor treatment were eligible for participation. METHODS: From June 2012 through February 2018, 277 participants were randomized to receive injections of 1.25 mg bevacizumab (n = 139) or 0.5 mg ranibizumab (n = 138). The follow-up was 6 months with a monthly dosing interval. MAIN OUTCOME MEASURES: The primary outcome was a change in visual acuity from baseline at 6 months. Changes in the central area thickness and safety were studied as secondary outcomes. RESULTS: The mean visual acuity (±standard deviation) improved, with 15.3±13.0 letters for bevacizumab and 15.5±13.3 letters for ranibizumab after 6 months of monthly treatment. The lower limit of the 2-sided 90% confidence interval was -1.724 letters, which is within the noninferiority margin of 4 letters. Even in the branch and (hemi-)central RVO subgroups, minimal differences were found in visual acuity outcomes between treatment arms. Changes in central area thickness on OCT at 6 months did not differ significantly between treatment groups, with a decrease of 287.0±231.3 μm in the bevacizumab group and 300.8±224.8 μm in the ranibizumab group. Severe adverse events (SAEs) were also distributed equally over both treatment groups: 10 participants (7.1%) in the bevacizumab group and 13 participants (9.2%) in the ranibizumab group experienced SAEs. CONCLUSIONS: This study showed, based on the change in visual acuity, that bevacizumab is noninferior to ranibizumab for patients with ME resulting from RVO of either subtype when receiving monthly injections for a period of 6 months. In addition, anatomic and safety outcomes did not differ between treatment groups. Based on our findings, bevacizumab may be an effective alternative to ranibizumab

    A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>South Africa has one of the highest incidences of multidrug-resistant tuberculosis (MDR-TB) in the world. Concomitantly, aminoglycosides are commonly used in this country as a treatment against MDR-TB. To date, at least five mutations are known to confer susceptibility to aminoglycoside-induced hearing loss. The aim of the present study was to develop a rapid screening method to determine whether these mutations are present in the South African population.</p> <p>Methods</p> <p>A multiplex method using the SNaPshot technique was used to screen for five mutations in the <it>MT-RNR1 </it>gene: A1555G, C1494T, T1095C, 961delT+C(n) and A827G. A total of 204 South African control samples, comprising 98 Mixed ancestry and 106 Black individuals were screened for the presence of the five mutations.</p> <p>Results</p> <p>A robust, cost-effective method was developed that detected the presence of all five sequence variants simultaneously. In this pilot study, the A1555G mutation was identified at a frequency of 0.9% in the Black control samples. The 961delT+C(n) variant was present in 6.6% of the Black controls and 2% of the Mixed ancestry controls. The T1095C, C1494T and A827G variants were not identified in any of the study participants.</p> <p>Conclusion</p> <p>The frequency of 0.9% for the A1555G mutation in the Black population in South Africa is of concern given the high incidence of MDR-TB in this particular ethnic group. Future larger studies are warranted to determine the true frequencies of the aminoglycoside deafness mutations in the general South African population. The high frequencies of the 961delT+C(n) variant observed in the controls suggest that this change is a common non-pathogenic polymorphism. This genetic method facilitates the identification of individuals at high risk of developing hearing loss prior to the start of aminoglycoside therapy. This is important in a low-resource country like South Africa where, despite their adverse side-effects, aminoglycosides will continue to be used routinely and are accompanied with very limited or no audiological monitoring.</p

    National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    Get PDF
    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the
    corecore