480 research outputs found

    Changing the Tide: An Internet/Video Exercise and Low Fat Diet Intervention with Middle School Students

    Get PDF
    The rising tide of obesity erodes the health of youths and many times results in adult obesity. The purpose of this investigation was to examine the effectiveness of an eight-session health promotion/transtheoretical model Internet/video-delivered intervention to increase physical activity and reduce dietary fat among low-income, culturally diverse, seventh-grade students. Those who completed more than half the sessions increased exercise, t(103) = −1.99, p = .05, and decreased the percentage of dietary fat, t(87) = 2.73, p = .008. Responses to the intervention by stage of change, race, and income are examined

    Development and Evaluation of a Measure for Social Support Provided by Friends during Lifestyle Management Programs

    Get PDF
    Obesity is a public health crisis that contributes to chronic disease prevalence, morbidity, and mortality. Nutrition and physical activity are risk factors for many chronic diseases including cancer and cardiovascular disease, the leading causes of death in the United States. Lifestyle management programs to address obesity and potential sequelae such as chronic conditions have shown efficacy, with social support an important factor in interventions. Instruments that assess social support specifically provided by friends are lacking but could be important predictors of program success. The purpose of this study was to examine the reliability and validity of the 10-item Social Support to Eat Better and Move More instrument that was developed and designed to measure support from friends that influence dietary and physical activity behaviors during lifestyle management programs. Data were collected during a cross-sectional study using purposive sampling strategies among adult residents of two southern states. Statistical analysis was conducted to examine latent factors, internal consistency, and convergent and predictive validity. These preliminary results indicated that the Social Support to Eat Better and Move More instrument had excellent internal consistency for the overall measure (α = 0.96) as well as for informational support (α = 0.97), emotional support (α = 0.96), and encouragement (α = 0.97). The tool related well to another general social support measure as well as to diet, physical activity, and health-related variables, and it can be a useful measure in lifestyle management studies

    Psychometric Properties of the Family Caregiver Delirium Knowledge Questionnaire

    Get PDF
    A valid, reliable measure of family caregivers’ knowledge about delirium was not located in the literature; such an instrument is essential to assess learning needs and outcomes of education provided. The purpose of the current study was to (a) develop a family Caregiver Delirium Knowledge Questionnaire (CDKQ) based on the Symptom Interpretation Model; and (b) establish validity and reliability of the measure. The 19-item CDKQ was developed and administered to 164 family caregivers for community-dwelling older adults. Descriptive statistics were examined for all variables. Psychometric testing included confirmatory factor analysis, item-to-total correlations, and internal consistency reliability. A three-factor model provided the best fit for the data. The findings support initial validity and reliability of the CDKQ with family caregivers. Although the CDKQ was developed for use with family caregivers, it has potential for use with other caregivers, such as home health aides

    Future Missions to Titan: Scientific and Engineering Challenges

    Get PDF
    Saturn’s largest moon, Titan, has been an enigma at every stage of its exploration. For three decades after the hazy atmosphere was discovered from the ground in the 1940s, debate ensued over whether it was a thin layer of methane or a dense shield of methane and nitrogen. Voyager 1 settled the matter in favor of the latter in 1980, but the details of the thick atmosphere discovered raised even more intriguing questions about the nature of the hidden surface, and the sources of resupply of methane to the atmosphere. The simplest possibility, that an ocean of methane and its major photochemical product ethane might cover the globe, was cast in doubt by Earth-based radar studies and then eliminated by Hubble Space Telescope and adaptive optics imaging in the near-infrared from large ground-based telescopes in the 1990s. These data, however, did not reveal the complexity of the surface that Cassini-Huygens would uncover beginning in 2004. A hydrological cycle appears to exist in which methane (in concert with ethane in some processes) plays the role on Titan that water plays on Earth. Channels likely carved by liquid methane and/or ethane, lakes and seas of these materials—some rivaling or exceeding North America’s Great Lakes in size—vast equatorial dune fields of complex organics made high in the atmosphere and shaped by wind, and intriguing hints of geologic activity suggest a world with a balance of geologic and atmospheric processes that is the solar system’s best analogue to Earth. Deep underneath Titan’s dense atmosphere and active, diverse surface is an interior ocean discovered by Cassini and thought to be largely composed of liquid water. Cassini-Huygens has provided spectacular data and has enabled us to glimpse the mysterious surface of Titan. However the mission will leave us with many questions that require future missions to answer. These include determining the composition of the surface and the geographic distribution of various organic constituents. Key questions remain about the ages of surface features, specifically whether cryovolcanism and tectonism are actively ongoing or are relics of a more active past. Ammonia, circumstantially suggested to be present by a variety of different kinds of Cassini-Huygens data, has yet to be seen. Is methane out-gassing from the interior or ice crust today? Are the lakes fed primarily by rain or underground methane-ethane aquifers (more properly, “alkanofers”) and how often have heavy methane rains come to the equatorial region? We should investigate whether Titan’s surface supported vaster seas of methane in the past, and whether complex self-organizing chemical systems have come and gone in the water volcanism, or even exist in exotic form today in the high latitude lakes. The presence of a magnetic field has yet to be established. A large altitude range in the atmosphere, from 400–900 km in altitude, will remain poorly explored after Cassini. Much remains to be understood about seasonal changes of the atmosphere at all levels, and the long-term escape of constituents to space. Other than Earth, Titan is the only world in our solar system known to have standing liquids and an active “hydrologic cycle” with clouds, rains, lakes and streams. The dense atmosphere and liquid lakes on Titan’s surface can be explored with airborne platforms and landed probes, but the key aspect ensuring the success of future investigations is the conceptualization and design of instruments that are small enough to fit on the landed probes and airborne platforms, yet sophisticated enough to conduct the kinds of detailed chemical (including isotopic), physical, and structural analyses needed to investigate the history and cycling of the organic materials. In addition, they must be capable of operating at cryogenic temperatures while maintaining the integrity of the sample throughout the analytic process. Illuminating accurate chemistries also requires that the instruments and tools are not simultaneously biasing the measurements due to localized temperature increases. While the requirements for these techniques are well understood, their implementation in an extremely low temperature environment with limited mass, power and volume is acutely challenging. No such instrument systems exist today. Missions to Titan are severely limited in both mass and power because spacecraft have to travel over a billion miles to get there and require a large amount of fuel, not only to reach Titan, but to maintain the ability to maneuver when they arrive. Landed missions have additional limitations, in that they must be packaged in a sealed aeroshell for entry into Titan’s atmosphere. Increases in landed mass and volume translate to increased aeroshell mass and size, requiring even more fuel for delivery to Titan. Nevertheless, missions during which such systems and instruments could be employed range from Discovery and New Frontiers class in situ probes that might be launched in the next decade, to a full-up Flagship class mission anticipated to follow the Europa Jupiter System Mission. Capitalizing on recent breakthroughs in cryo-technologies and smart materials fabrication, we developed conceptual designs of sample acquisition systems and instruments capable of in situ operation under low temperature environments. The study included two workshops aimed at brainstorming and actively discussing a broad range of ideas and associated challenges with landing instruments on Titan, as well as more focused discussions during the intervening part of the study period. The workshops each lasted ~4 days (Monday-Thursday/Friday), included postdoctoral fellows and students in addition to the core team members, and generated active engagement from the Caltech and JPL team participants, as well as from the outside institutions. During the workshops, new instruments and sampling methodologies were identified to handle the challenges of characterizing everything from small molecules in Titan’s upper atmosphere to gross mixtures of high molecular weight complex organics in condensed phases, including atmospheric aerosols and “organic sand” in dunes, to highly dilute components in ices and lakes. To enable these advances in cryogenic instrumentation breakthroughs in a wide range of disciplines, including electronics, chemical and mechanical engineering, and materials science were identified

    Circuit for Communication Over Power Lines

    Get PDF
    Many distributed systems share common sensors and instruments along with a common power line supplying current to the system. A communication technique and circuit has been developed that allows for the simple inclusion of an instrument, sensor, or actuator node within any system containing a common power bus. Wherever power is available, a node can be added, which can then draw power for itself, its associated sensors, and actuators from the power bus all while communicating with other nodes on the power bus. The technique modulates a DC power bus through capacitive coupling using on-off keying (OOK), and receives and demodulates the signal from the DC power bus through the same capacitive coupling. The circuit acts as serial modem for the physical power line communication. The circuit and technique can be made of commercially available components or included in an application specific integrated circuit (ASIC) design, which allows for the circuit to be included in current designs with additional circuitry or embedded into new designs. This device and technique moves computational, sensing, and actuation abilities closer to the source, and allows for the networking of multiple similar nodes to each other and to a central processor. This technique also allows for reconfigurable systems by adding or removing nodes at any time. It can do so using nothing more than the in situ power wiring of the system

    Apparatus and Method for Communication over Power Lines

    Get PDF
    An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line

    Apparatus and Method for Communication over Power Lines

    Get PDF
    An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line

    Social Determinants of Health Related To Stay-At-Home Order Adherence and Social Distancing Attitudes Among a Diverse Deep South Population

    Get PDF
    Objective: To describe COVID-19 related symptoms and medical care experienced in the first six months of the pandemic as well as stay-at-home order adherence, and attitudes related to COVID-19 risk and social distancing among a diverse sample of adults in the Deep South. Methods: Survey data were collected from 411 Louisiana and Mississippi residents for three weeks in June 2020 through social media. Results: Over half (52.5%) of participants who experienced COVID-19 related symptoms (with 41.5% experiencing at least one symptom) did not feel the severity of symptoms warranted seeking medical care. 91.6% of the Deep South adults visited certain places or did activities where visiting or gathering with other people was involved during stay-at-home mandates. Religiosity/spirituality, age, education, number of children in the home, attitudes related to COVID-19 risk of complications and social distancing were related to the greater/lesser likelihood of stay-at-home order adherence. Conclusions: Various cultural and contextual factors were related to stay-at-home order adherence. Understanding how social values, life stage, socioeconomic, and geographic factors influence stay-at-home order adherence would lead to more effective policy design to improve population adherence

    The Church Bridge Project Focus Group Results: African American Perspectives of Weight Management Programs to Improve Nutrition and Physical Activity Behaviors

    Get PDF
    Background: The prevalence of obesity is disproportionately high among African Americans in the Southern US. More information is needed about factors that influence participation in nutrition and physical activity programs to promote healthy weight. Objective: The purpose of this study is to explore the weight management perceptions of young to middle aged adult African Americans. Methods: The Church Bridge Project intervention participants were recruited for two focus groups. Qualitative data were recorded, transcribed and a thematic content analysis was conducted to identify major themes. Results: Barriers included technology learning curve/burden and competing priorities. Facilitators included support, limited cost, convenience, and health. Participants perceived the term “weight management” program as overwhelming and defeating. Conclusion: The Church Bridge Project model confirmed social support and disease prevention as key factors for weight management. Further work should substantiate social support as a key factor to guide minority health efforts

    Future Missions to Titan: Scientific and Engineering Challenges

    Get PDF
    Saturn’s largest moon, Titan, has been an enigma at every stage of its exploration. For three decades after the hazy atmosphere was discovered from the ground in the 1940s, debate ensued over whether it was a thin layer of methane or a dense shield of methane and nitrogen. Voyager 1 settled the matter in favor of the latter in 1980, but the details of the thick atmosphere discovered raised even more intriguing questions about the nature of the hidden surface, and the sources of resupply of methane to the atmosphere. The simplest possibility, that an ocean of methane and its major photochemical product ethane might cover the globe, was cast in doubt by Earth-based radar studies and then eliminated by Hubble Space Telescope and adaptive optics imaging in the near-infrared from large ground-based telescopes in the 1990s. These data, however, did not reveal the complexity of the surface that Cassini-Huygens would uncover beginning in 2004. A hydrological cycle appears to exist in which methane (in concert with ethane in some processes) plays the role on Titan that water plays on Earth. Channels likely carved by liquid methane and/or ethane, lakes and seas of these materials—some rivaling or exceeding North America’s Great Lakes in size—vast equatorial dune fields of complex organics made high in the atmosphere and shaped by wind, and intriguing hints of geologic activity suggest a world with a balance of geologic and atmospheric processes that is the solar system’s best analogue to Earth. Deep underneath Titan’s dense atmosphere and active, diverse surface is an interior ocean discovered by Cassini and thought to be largely composed of liquid water. Cassini-Huygens has provided spectacular data and has enabled us to glimpse the mysterious surface of Titan. However the mission will leave us with many questions that require future missions to answer. These include determining the composition of the surface and the geographic distribution of various organic constituents. Key questions remain about the ages of surface features, specifically whether cryovolcanism and tectonism are actively ongoing or are relics of a more active past. Ammonia, circumstantially suggested to be present by a variety of different kinds of Cassini-Huygens data, has yet to be seen. Is methane out-gassing from the interior or ice crust today? Are the lakes fed primarily by rain or underground methane-ethane aquifers (more properly, “alkanofers”) and how often have heavy methane rains come to the equatorial region? We should investigate whether Titan’s surface supported vaster seas of methane in the past, and whether complex self-organizing chemical systems have come and gone in the water volcanism, or even exist in exotic form today in the high latitude lakes. The presence of a magnetic field has yet to be established. A large altitude range in the atmosphere, from 400–900 km in altitude, will remain poorly explored after Cassini. Much remains to be understood about seasonal changes of the atmosphere at all levels, and the long-term escape of constituents to space. Other than Earth, Titan is the only world in our solar system known to have standing liquids and an active “hydrologic cycle” with clouds, rains, lakes and streams. The dense atmosphere and liquid lakes on Titan’s surface can be explored with airborne platforms and landed probes, but the key aspect ensuring the success of future investigations is the conceptualization and design of instruments that are small enough to fit on the landed probes and airborne platforms, yet sophisticated enough to conduct the kinds of detailed chemical (including isotopic), physical, and structural analyses needed to investigate the history and cycling of the organic materials. In addition, they must be capable of operating at cryogenic temperatures while maintaining the integrity of the sample throughout the analytic process. Illuminating accurate chemistries also requires that the instruments and tools are not simultaneously biasing the measurements due to localized temperature increases. While the requirements for these techniques are well understood, their implementation in an extremely low temperature environment with limited mass, power and volume is acutely challenging. No such instrument systems exist today. Missions to Titan are severely limited in both mass and power because spacecraft have to travel over a billion miles to get there and require a large amount of fuel, not only to reach Titan, but to maintain the ability to maneuver when they arrive. Landed missions have additional limitations, in that they must be packaged in a sealed aeroshell for entry into Titan’s atmosphere. Increases in landed mass and volume translate to increased aeroshell mass and size, requiring even more fuel for delivery to Titan. Nevertheless, missions during which such systems and instruments could be employed range from Discovery and New Frontiers class in situ probes that might be launched in the next decade, to a full-up Flagship class mission anticipated to follow the Europa Jupiter System Mission. Capitalizing on recent breakthroughs in cryo-technologies and smart materials fabrication, we developed conceptual designs of sample acquisition systems and instruments capable of in situ operation under low temperature environments. The study included two workshops aimed at brainstorming and actively discussing a broad range of ideas and associated challenges with landing instruments on Titan, as well as more focused discussions during the intervening part of the study period. The workshops each lasted ~4 days (Monday-Thursday/Friday), included postdoctoral fellows and students in addition to the core team members, and generated active engagement from the Caltech and JPL team participants, as well as from the outside institutions. During the workshops, new instruments and sampling methodologies were identified to handle the challenges of characterizing everything from small molecules in Titan’s upper atmosphere to gross mixtures of high molecular weight complex organics in condensed phases, including atmospheric aerosols and “organic sand” in dunes, to highly dilute components in ices and lakes. To enable these advances in cryogenic instrumentation breakthroughs in a wide range of disciplines, including electronics, chemical and mechanical engineering, and materials science were identified
    • 

    corecore