19,879 research outputs found

    Classical {\it vs.}\ Landau-Ginzburg Geometry of Compactification

    Full text link
    We consider superstring compactifications where both the classical description, in terms of a Calabi-Yau manifold, and also the quantum theory is known in terms of a Landau-Ginzburg orbifold model. In particular, we study (smooth) Calabi-Yau examples in which there are obstructions to parametrizing all of the complex structure cohomology by polynomial deformations thus requiring the analysis based on exact and spectral sequences. General arguments ensure that the Landau-Ginzburg chiral ring copes with such a situation by having a nontrivial contribution from twisted sectors. Beyond the expected final agreement between the mathematical and physical approaches, we find a direct correspondence between the analysis of each, thus giving a more complete mathematical understanding of twisted sectors. Furthermore, this approach shows that physical reasoning based upon spectral flow arguments for determining the spectrum of Landau-Ginzburg orbifold models finds direct mathematical justification in Koszul complex calculations and also that careful point- field analysis continues to recover suprisingly much of the stringy features.Comment: 14

    Green's Functions and the Adiabatic Hyperspherical Method

    Get PDF
    We address the few-body problem using the adiabatic hyperspherical representation. A general form for the hyperangular Green's function in dd-dimensions is derived. The resulting Lippmann-Schwinger equation is solved for the case of three-particles with s-wave zero-range interactions. Identical particle symmetry is incorporated in a general and intuitive way. Complete semi-analytic expressions for the nonadiabatic channel couplings are derived. Finally, a model to describe the atom-loss due to three-body recombination for a three-component fermi-gas of 6^{6}Li atoms is presented.Comment: 14 pages, 8 figures, 2 table

    Coexistence of Antiferromagnetism and Superconductivity in Electron-doped High-Tc Superconductors

    Full text link
    We present magnetotransport evidence for antiferromagnetism in films of the electron-doped cuprates Pr2−x_{2-x}Cex_xCuO4_4. Our results show clear signature of static antiferromagnetism up to optimal doping x=0.15, with a quantum phase transition close to x=0.16, and a coexistence of static antiferromagnetism and superconductivity for 0.12≤\lex≤\le0.15

    The Development of Equilibrium After Preheating

    Full text link
    We present a fully nonlinear study of the development of equilibrium after preheating. Preheating is the exponentially rapid transfer of energy from the nearly homogeneous inflaton field to fluctuations of other fields and/or the inflaton itself. This rapid transfer leaves these fields in a highly nonthermal state with energy concentrated in infrared modes. We have performed lattice simulations of the evolution of interacting scalar fields during and after preheating for a variety of inflationary models. We have formulated a set of generic rules that govern the thermalization process in all of these models. Notably, we see that once one of the fields is amplified through parametric resonance or other mechanisms it rapidly excites other coupled fields to exponentially large occupation numbers. These fields quickly acquire nearly thermal spectra in the infrared, which gradually propagates into higher momenta. Prior to the formation of total equilibrium, the excited fields group into subsets with almost identical characteristics (e.g. group effective temperature). The way fields form into these groups and the properties of the groups depend on the couplings between them. We also studied the onset of chaos after preheating by calculating the Lyapunov exponent of the scalar fields.Comment: 15 pages, 23 figure

    The Penguin: a Low Reynolds Number Powered Glider for Station Keeping Missions

    Get PDF
    The Penguin is a low Reynolds number (approx. 100,000) remotely piloted vehicle (RPV). It was designed to fly three laps indoors around two pylons in a figure-eight course while maximizing loiter time. The Penguin's low Reynolds number mission is an important one currently being studied for possible future flights in the atmospheres of other planets and for specialized military missions. Although the Penguin's mission seemed quite simple at first, the challenges of such low Reynolds number flight have proven to be quite unique. In addition to the constraint of low Reynolds number flight, the aircraft had to be robust in its control, highly durable, and it had to carry a small instrument package. The Penguin's flight plan, concept, performance, aerodynamic design, weight estimation, structural design, propulsion, stability and control, and cost estimate is detailed
    • …
    corecore