23,374 research outputs found

    Observation of wave-packet propagation in the ion cyclotron range of frequencies in a tokamak plasma

    Get PDF
    Experimental observation of wave-packet propagation in the ion cyclotron range of frequencies in a tokamak plasma is reported. Studies were carried out in the Caltech Research Tokamak [Phys. Fluids 23, 614 (1980)] in a pure hydrogen plasma and in a regime where fast-wave damping was sufficiently small to permit multiple toroidal transits of the wave packet. Waves were launched by exciting a small loop antenna with a short burst of radio-frequency current and were detected with shielded magnetic probes. Probe scans revealed a large increase in wave-packet amplitude at smaller minor radii, and the packet velocity was found to be independent of radial position. Measurement of the packet transit time yielded direct information about the wave group velocity. Packet velocity was investigated as a function of the fundamental excitation frequency, plasma density, and toroidal magnetic field. Results are compared with the predictions of a cold plasma model that includes a vacuum layer at the edge

    Exact treatment of ℓ≠0\ell \neq 0 states

    Full text link
    Using the basic ingredient of supersymmetry, a general procedure for the treatment of quantum states having nonzero angular momenta is presented.Comment: 7 pages article in LaTEX (uses standard article.sty). No Figures. Accepted by Chinese Physics Letters (2004, vol 21. No.9

    Simulation of charged particle trajectories in the neutron decay correlation experiment abBA

    Get PDF
    The proposed neutron decay correlation experiment, abBA, will directly detect the direction of emission of decay protons and electrons as well as providing spectroscopic information for both particles. In order to provide this information, the abBA experiment incorporates spatially varying electric and magnetic fields. We report on detailed simulations of the decay particle trajectories in order to assess the impact of various systematic effects on the experimental observables. These include among others; adiabaticity of particle orbits, tracking of orbits, reversal of low energy protons due to inhomogeneous electric field, and accuracy of proton time of flight measurements. Several simulation methods were used including commercial software (Simion), custom software, as well as analytical tools based on the use of adiabatic invariants. Our results indicate that the proposed field geometry of the abBA spectrometer will be substantially immune to most systematic effects and that transport calculations using adiabatic invariants agree well with solution of the full equations of motion

    Low energy electron scattering from DNA and RNA bases: shape resonances and radiation damage

    Full text link
    Calculations are carried out to determine elastic scattering cross sections and resonance energies for low energy electron impact on uracil and on each of the DNA bases (thymine, cytosine, adenine, guanine), for isolated molecules in their equilibrium geometry. Our calculations are compared with available theory and experiment. We also attempt to correlate this information with experimental dissociation patterns through an analysis of the temporary anion structures that are formed by electron capture in shape resonances.Comment: 20 pages, 12 figures, submitted to J. Chem. Phy

    c-Axis longitudinal magnetoresistance of the electron-doped superconductor Pr1.85Ce0.15CuO4

    Full text link
    We report c-axis resistivity and longitudinal magnetoresistance measurements of superconducting Pr1.85Ce0.15CuO4 single crystals. In the temperature range 13K<T<32K, a negative magnetoresistance is observed at fields just above Hc2. Our studies suggest that this negative magnetoresistance is caused by superconducting fluctuations. At lower temperatures (T<13K), a different magnetoresistance behavior and a resistivity upturn are observed, whose origin is still unknown.Comment: Accepted for publication in Phys. Rev.

    On the Theory of Fermionic Preheating

    Get PDF
    In inflationary cosmology, the particles constituting the Universe are created after inflation due to their interaction with moving inflaton field(s) in the process of preheating. In the fermionic sector, the leading channel is out-of equilibrium particle production in the non-perturbative regime of parametric excitation, which respects Pauli blocking but differs significantly from the perturbative expectation. We develop theory of fermionic preheating coupling to the inflaton, without and with expansion of the universe, for light and massive fermions, to calculate analytically the occupation number of created fermions, focusing on their spectra and time evolution. In the case of large resonant parameter qq we extend for rermions the method of successive parabolic scattering, earlier developed for bosonic preheating. In an expanding universe parametric excitation of fermions is stochastic. Created fermions very quickly, within tens of inflaton oscillations, fill up a sphere of radius ≃q1/4\simeq q^{1/4} in monetum space. We extend our formalism to the production of superheavy fermions and to `instant' fermion creation.Comment: 14 pages, latex, 12 figures, submitted for publicatio

    Measurements of the absolute value of the penetration depth in high-Tc T_c superconductors using a tunnel diode resonator

    Full text link
    A method is presented to measure the absolute value of the London penetration depth, λ\lambda, from the frequency shift of a resonator. The technique involves coating a high-TcT_c superconductor (HTSC) with film of low - Tc material of known thickness and penetration depth. The method is applied to measure London penetration depth in YBa2Cu3O{7-\delta} (YBCO) Bi2Sr2CaCu2O{8+\delta} (BSCCO) and Pr{1.85}Ce{0.15}CuO{4-\delta}(PCCO).ForYBCOandBSCCO,thevaluesof (PCCO). For YBCO and BSCCO, the values of \lambda (0)areinagreementwiththeliteraturevalues.ForPCCO are in agreement with the literature values. For PCCO \lambda \approx 2790$ \AA, reported for the first time.Comment: RevTex 4 (beta 4). 4 pages, 4 EPS figures. Submitted to Appl. Phys. Let
    • 

    corecore