29,015 research outputs found
Development of advanced digital techniques for data acquisition processing and communication Interim scientific report
Digital techniques for automatic evaluation of images and data compression algorithm
Deflections of beam columns on multiple supports
Lateral deflections of beam columns on multiple equally spaced supports are calculated using the STAGS nonlinear structural analysis computer program. Three lateral loadings are considered, uniform, linear, and uniform over only the center bay. Two types of boundary conditions are considered at the end supports, clamped, and simple support. The effect of an initial sinusoidal imperfection are considered. Deflections in the center and end bays of the beam columns are presented as a function of applied axial compressive load. As the number of bays becomes large, the effect of boundary conditions on the deflections in the center bays diminishes. For cases involving a uniform or linearly varying load, imperfections can have a much larger effect on deflections in the center bays than can lateral pressure
Current research on shear buckling and thermal loads with PASCO: Panel Analysis and Sizing Code
The PASCO computer program to obtain the detailed dimensions of optimum stiffened composite structural panels is described. Design requirements in terms of inequality constraints can be placed on buckling loads or vibration frequencies, lamina stresses and strains, and overall panel stiffness for each of many load conditions. General panel cross sections can be treated. An analysis procedure involving a smeared orthotropic solution was investigated. The conservatism in the VIPASA solution and the danger in a smeared orthotropic solution is explored. PASCO's capability to design for thermal loadings is also described. It is emphasized that design studies illustrate the importance of the multiple load condition capability when thermal loads are present
Buckling loads for stiffened panels subjected to combined longitudinal compression and shear loadings: Results obtained with PASCO, EAL, and STAGS computer
The shear buckling analyses used in PASCO are summarized. The PASCO analyses include the basic VIPASA analysis, which is essentially exact for longitudinal and transverse loads, and a smeared orthotropic solution which was added to alleviate a shortcoming in the VIPASA analysis. Buckling results are presented for six stiffened panels loaded by combinations of longitudinal compression and shear. The buckling results were obtained with the PASCO, EAL, and STAGS computer programs. The EAL and STAGS solutions were obtained with a fine finite element mesh and provide calculations for the entire range of combinations of longitudinal compression and shear loadings
Buckling loads of stiffened panels subjected to combined longitudinal compression and shear: Results obtained with PASCO, EAL, and STAGS computer programs
Buckling analyses used in PASCO are summarized with emphasis placed on the shear buckling analyses. The PASCO buckling analyses include the basic VIPASA analysis, which is essentially exact for longitudinal and transverse loads, and a smeared stiffener solution, which treats a stiffened panel as an orthotropic plate. Buckling results are then presented for seven stiffened panels loaded by combinations of longitudinal compression and shear. The buckling results were obtained with the PASCO, EAL, and STAGS computer programs. The EAL and STAGS solutions were obtained with a fine finite element mesh and are very accurate. These finite element solutions together with the PASCO results for pure longitudinal compression provide benchmark calculations to evaluate other analysis procedures
Steep-Spectrum Radio Emission from the Low-Mass Active Galactic Nucleus GH 10
GH 10 is a broad-lined active galactic nucleus (AGN) energized by a black
hole of mass 800,000 Solar masses. It was the only object detected by Greene et
al. in their Very Large Array (VLA) survey of 19 low-mass AGNs discovered by
Greene & Ho. New VLA imaging at 1.4, 4.9, and 8.5 GHz reveals that GH 10's
emission has an extent of less than 320 pc, has an optically-thin synchrotron
spectrum with a spectral index -0.76+/-0.05, is less than 11 percent linearly
polarized, and is steady - although poorly sampled - on timescales of weeks and
years. Circumnuclear star formation cannot dominate the radio emission, because
the high inferred star formation rate, 18 Solar masses per year, is
inconsistent with the rate of less than 2 Solar masses per year derived from
narrow Halpha and [OII] 3727 emission. Instead, the radio emission must be
mainly energized by the low-mass black hole. GH 10's radio properties match
those of the steep-spectrum cores of Palomar Seyfert galaxies, suggesting that,
like those Seyferts, the emission is outflow-driven. Because GH 10 is radiating
close to its Eddington limit, it may be a local analog of the starting
conditions, or seeds, for supermassive black holes. Future imaging of GH 10 at
higher resolution thus offers an opportunity to study the relative roles of
radiative versus kinetic feedback during black-hole growth.Comment: 7 pages; 2 figures; emulateapj; to appear in Ap
Precision determination of absolute neutron flux
A technique for establishing the total neutron rate of a highly-collimated
monochromatic cold neutron beam was demonstrated using a method of an
alpha-gamma counter. The method involves only the counting of measured rates
and is independent of neutron cross sections, decay chain branching ratios, and
neutron beam energy. For the measurement, a target of 10B-enriched boron
carbide totally absorbed the neutrons in a monochromatic beam, and the rate of
absorbed neutrons was determined by counting 478keV gamma rays from neutron
capture on 10B with calibrated high-purity germanium detectors. A second
measurement based on Bragg diffraction from a perfect silicon crystal was
performed to determine the mean de Broglie wavelength of the beam to a
precision of 0.024 %. With these measurements, the detection efficiency of a
neutron monitor based on neutron absorption on 6Li was determined to an overall
uncertainty of 0.058 %. We discuss the principle of the alpha-gamma method and
present details of how the measurement was performed including the systematic
effects. We also describe how this method may be used for applications in
neutron dosimetry and metrology, fundamental neutron physics, and neutron cross
section measurements.Comment: 44 page
Radio Emission from the Intermediate-mass Black Hole in the Globular Cluster G1
We have used the Very Large Array (VLA) to search for radio emission from the
globular cluster G1 (Mayall-II) in M31. G1 has been reported by Gebhardt et al.
to contain an intermediate-mass black hole (IMBH) with a mass of ~2 x 10^4
solar masses. Radio emission was detected within an arcsecond of the cluster
center with an 8.4 GHz power of 2 x 10^{15} W/Hz. The radio/X-ray ratio of G1
is a few hundred times higher than that expected for a high-mass X-ray binary
in the cluster center, but is consistent with the expected value for accretion
onto an IMBH with the reported mass. A pulsar wind nebula is also a possible
candidate for the radio and X-ray emission from G1; future high-sensitivity
VLBI observations might distinguish between this possibility and an IMBH. If
the radio source is an IMBH, and similar accretion and outflow processes occur
for hypothesized ~ 1000-solar-mass black holes in Milky Way globular clusters,
they are within reach of the current VLA and should be detectable easily by the
Expanded VLA when it comes on line in 2010.Comment: ApJ Letters, accepted, 11 pages, 1 figur
Families of Quintic Calabi-Yau 3-Folds with Discrete Symmetries
At special loci in their moduli spaces, Calabi-Yau manifolds are endowed with
discrete symmetries. Over the years, such spaces have been intensely studied
and have found a variety of important applications. As string compactifications
they are phenomenologically favored, and considerably simplify many important
calculations. Mathematically, they provided the framework for the first
construction of mirror manifolds, and the resulting rational curve counts.
Thus, it is of significant interest to investigate such manifolds further. In
this paper, we consider several unexplored loci within familiar families of
Calabi-Yau hypersurfaces that have large but unexpected discrete symmetry
groups. By deriving, correcting, and generalizing a technique similar to that
of Candelas, de la Ossa and Rodriguez-Villegas, we find a calculationally
tractable means of finding the Picard-Fuchs equations satisfied by the periods
of all 3-forms in these families. To provide a modest point of comparison, we
then briefly investigate the relation between the size of the symmetry group
along these loci and the number of nonzero Yukawa couplings. We include an
introductory exposition of the mathematics involved, intended to be accessible
to physicists, in order to make the discussion self-contained.Comment: 54 pages, 3 figure
- …