23,336 research outputs found
Indirect Dissociative Recombination of LiH Molecules Fueled by Complex Resonance Manifolds
The LiH molecule is prototypical of the indirect dissociative
recombination (DR) process, in which a colliding electron destroys the molecule
through Rydberg capture pathways. This Letter develops the first quantitative
test of the Siegert state multichannel quantum defect theory description of
indirect DR for a diatomic molecular ion. The R-matrix approach is adopted to
calculate ab-initio quantum defects, functions of the internuclear distance
that characterize both Rydberg states and the zero-energy collisions of
electrons with LiH ions. The calculated DR rate coefficient agrees
accurately with recent experimental data (S. Krohn et al, Phys. Rev. Lett. 86,
4005). We identify the doorways to fast indirect DR as complex resonance
manifolds, which couple closed channels having both high and low principal
quantum numbers. This sheds new light on the competition between direct and
indirect DR pathways, and suggests the reason why previous theory
underestimated the DR rate by an order of magnitude.Comment: Submitted to PR
Experiences with a preliminary NICE/SPAR structural analysis system
Development of a new structural analysis system based on the original SPAR finite element code and the NICE system is described. The system is denoted NICE/SPAR. NICE was designed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Engineering Information Systems, Inc. It includes many complementary structural analysis and utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring new computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with the SPAR computational modules
Three-Body Recombination in One Dimension
We study the three-body problem in one dimension for both zero and finite
range interactions using the adiabatic hyperspherical approach. Particular
emphasis is placed on the threshold laws for recombination, which are derived
for all combinations of the parity and exchange symmetries. For bosons, we
provide a numerical demonstration of several universal features that appear in
the three-body system, and discuss how certain universal features in three
dimensions are different in one dimension. We show that the probability for
inelastic processes vanishes as the range of the pair-wise interaction is taken
to zero and demonstrate numerically that the recombination threshold law
manifests itself for large scattering length.Comment: 15 pages 7 figures Submitted to Physical Review
Theory of dissociative recombination of highly-symmetric polyatomic ions
A general first-principles theory of dissociative recombination is developed
for highly-symmetric molecular ions and applied to HO and CH,
which play an important role in astrophysical, combustion, and laboratory
plasma environments. The theoretical cross-sections obtained for the
dissociative recombination of the two ions are in good agreement with existing
experimental data from storage ring experiments
Vortex dynamics
Vortex flows of interest to aerodynamicists cover a wide range of scales from a fraction of an inch in boundary layer flows to many feet in wake flows. In many applications these flows are poorly understood and, due to their complexity, present a challenge both analytically and experimentally. Four topics representing the spectrum of experimental and analytical vortex research are presented
Near threshold rotational excitation of molecular ions by electron-impact
New cross sections for the rotational excitation of H by electrons are
calculated {\it ab initio} at low impact energies. The validity of the
adiabatic-nuclei-rotation (ANR) approximation, combined with -matrix
wavefunctions, is assessed by comparison with rovibrational quantum defect
theory calculations based on the treatment of Kokoouline and Greene ({\it Phys.
Rev. A} {\bf 68} 012703 2003). Pure ANR excitation cross sections are shown to
be accurate down to threshold, except in the presence of large oscillating
Rydberg resonances. These resonances occur for transitions with
and are caused by closed channel effects. A simple analytic formula is derived
for averaging the rotational probabilities over such resonances in a 3-channel
problem. In accord with the Wigner law for an attractive Coulomb field,
rotational excitation cross sections are shown to be large and finite at
threshold, with a significant but moderate contribution from closed channels.Comment: 3 figures, a5 page
Design and construction of a point-contact spectroscopy rig with lateral scanning capability
The design and realization of a cryogenic rig for point-contact spectroscopy
measurements in the needle-anvil configuration is presented. Thanks to the use
of two piezoelectric nano-positioners, the tip can move along the vertical
() and horizontal () direction and thus the rig is suitable to probe
different regions of a sample \textit{in situ}. Moreover, it can also form
double point-contacts on different facets of a single crystal for achieving,
e.g., an interferometer configuration for phase-sensitive measurements. For the
latter purpose, the sample holder can also host a Helmholtz coil for applying a
small transverse magnetic field to the junction. A semi-rigid coaxial cable can
be easily added for studying the behavior of Josephson junctions under
microwave irradiation. The rig can be detached from the probe and thus used
with different cryostats. The performance of this new probe has been tested in
a Quantum Design PPMS system by conducting point-contact Andreev reflection
measurements on Nb thin films over large areas as a function of temperature and
magnetic field.Comment: 7 pages, 7 figures, published in Rev. Sci. Instru
- …