21,056 research outputs found
Measurement of point velocities in turbulent liquid flow
Turbulent water flow velocity distribution using hot-wire anemometer and photographic technique
Evidence for a quantum phase transition in electron-doped PrCeCuO from Thermopower measurements
The evidence for a quantum phase transition under the superconducting dome in
the high- cuprates has been controversial. We report low temperature
normal state thermopower(S) measurements in electron-doped
PrCeCuO as a function of doping (x from 0.11 to
0.19). We find that at 2K both S and S/T increase dramatically from x=0.11 to
0.16 and then saturate in the overdoped region. This behavior has a remarkable
similarity to previous Hall effect results in
PrCeCuO . Our results are further evidence for an
antiferromagnetic to paramagnetic quantum phase transition in electron-doped
cuprates near x=0.16.Comment: 4 pages, 5 figure
Evidence for Antiferromagnetic Order in LaCeCuO from Angular Magnetoresistance Measurements
We investigated the in-plane angular magnetoresistivity (AMR) of -phase LaCeCuO (LCCO) thin films () fabricated by a pulsed laser deposition technique. The in-plane
AMR with shows a twofold symmetry instead of the
fourfold behavior found in other electron-doped cuprates such as PrCeCuO and NdCeCuO. The twofold AMR
disappears above a certain temperature, . The is well above
for ( K), and decreases with increasing doping,
until it is no longer observed above at . This twofold AMR
below is suggested to originate from an antiferromagnetic or spin
density wave order.Comment: to be published in Phys. Rev. B, Vol. 80 (2009
Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates
Transposable elements (TEs) are increasingly being recognized as powerful facilitators of evolution. We propose the TE-Thrust hypothesis to encompass TE-facilitated processes by which genomes self-engineer coding, regulatory, karyotypic or other genetic changes. Although TEs are occasionally harmful to some individuals, genomic dynamism caused by TEs can be very beneficial to lineages. This can result in differential survival and differential fecundity of lineages. Lineages with an abundant and suitable repertoire of TEs have enhanced evolutionary potential and, if all else is equal, tend to be fecund, resulting in species-rich adaptive radiations, and/or they tend to undergo major evolutionary transitions. Many other mechanisms of genomic change are also important in evolution, and whether the evolutionary potential of TE-Thrust is realized is heavily dependent on environmental and ecological factors. The large contribution of TEs to evolutionary innovation is particularly well documented in the primate lineage. In this paper, we review numerous cases of beneficial TE-caused modifications to the genomes of higher primates, which strongly support our TE-Thrust hypothesis
Genomic variations associated with attenuation in Mycobacterium avium subsp paratuberculosis vaccine strains
BACKGROUND: Mycobacterium avium subspecies paratuberculosis (MAP) whole cell vaccines have been widely used tools in the control of Johne's disease in animals despite being unable to provide complete protection. Current vaccine strains derive from stocks created many decades ago; however their genotypes, underlying mechanisms and relative degree of their attenuation are largely unknown.
RESULTS: Using mouse virulence studies we confirm that MAP vaccine strains 316 F, II and 2e have diverse but clearly attenuated survival and persistence characteristics compared with wild type strains. Using a pan genomic microarray we characterise the genomic variations in a panel of vaccine strains sourced from stocks spanning over 40 years of maintenance. We describe multiple genomic variations specific for individual vaccine stocks in both deletion (26-32 Kbp) and tandem duplicated (11-40 Kbp) large variable genomic islands and insertion sequence copy numbers. We show individual differences suitable for diagnostic differentiation between vaccine and wild type genotypes and provide evidence for functionality of some of the deleted MAP-specific genes and their possible relation to attenuation.
CONCLUSIONS: This study shows how culture environments have influenced MAP genome diversity resulting in large tandem genomic duplications, deletions and transposable element activity. In combination with classical selective systematic subculture this has led to fixation of specific MAP genomic alterations in some vaccine strain lineages which link the resulting attenuated phenotypes with deficiencies in high reactive oxygen species handling
Glucose availability and sensitivity to anoxia of isolated rat peripheral nerve
The contrast between resistance to ischemia and ischemic lesions in peripheral nerves of diabetic patients was explored by in vitro experiments. Isolated and desheathed rat peroneal nerves were incubated in the following solutions with different glucose availability: 1) 25 mM glucose, 2) 2.5 mM glucose, and 3) 2.5 mM glucose plus 10 mM 2-deoxy-D-glucose. Additionally, the buffering power of all of these solutions was modified. Compound nerve action potential (CNAP), extracellular pH, and extracellular potassium activity (aKe) were measured simultaneously before, during, and after a period of 30 min of anoxia. An increase in glucose availability led to a slower decline in CNAP and to a smaller rise in aKe during anoxia. This resistance to anoxia was accompanied by an enhanced extracellular acidosis. Postanoxic recovery of CNAP was always complete in 25 mM HCO3(-)-buffered solutions. In 5 mM HCO3- and in HCO3(-)-free solutions, however, nerves incubated in 25 mM glucose did not recover functionally after anoxia, whereas nerves bathed in solutions 2 or 3 showed a complete restitution of CNAP. We conclude that high glucose availability and low PO2 in the combination with decreased buffering power and/or inhibition of HCO3(-)-dependent pH regulation mechanisms may damage peripheral mammalian nerves due to a pronounced intracellular acidosis
Constraining properties of the black hole population using LISA
LISA should detect gravitational waves from tens to hundreds of systems
containing black holes with mass in the range from 10 thousand to 10 million
solar masses. Black holes in this mass range are not well constrained by
current electromagnetic observations, so LISA could significantly enhance our
understanding of the astrophysics of such systems. In this paper, we describe a
framework for combining LISA observations to make statements about massive
black hole populations. We summarise the constraints that LISA observations of
extreme-mass-ratio inspirals might be able to place on the mass function of
black holes in the LISA range. We also describe how LISA observations can be
used to choose between different models for the hierarchical growth of
structure in the early Universe. We consider four models that differ in their
prescription for the initial mass distribution of black hole seeds, and in the
efficiency of accretion onto the black holes. We show that with as little as 3
months of LISA data we can clearly distinguish between these models, even under
relatively pessimistic assumptions about the performance of the detector and
our knowledge of the gravitational waveforms.Comment: 12 pages, 3 figures, submitted to Class. Quantum Grav. for
proceedings of 8th LISA Symposium; v2 minor changes for consistency with
accepted versio
- …