926 research outputs found

    Rotavirus NSP1 contributes to intestinal viral replication, pathogenesis, and transmission

    Get PDF
    Rotavirus (RV)-encoded nonstructural protein 1 (NSP1), the product of gene segment 5, effectively antagonizes host interferon (IFN) signaling via multiple mechanisms. Recent studies with the newly established RV reverse genetics system indicate that NSP1 is not essential for the replication of the simian RV SA11 strain in cell culture. However, the role of NSP1 in RV infectio

    Rotavirus

    Get PDF
    1-10Rotaviruses (RV) are ubiquitous, highly infectious, segmented double-stranded RNA genome viruses of importance in public health because of the severe acute gastroenteritis they cause in young children and many animal species. They are very well adapted to their host, with symptomatic and asymptomatic reinfections being virtually universal during the first 3 years of life. Antibodies are the major arm of the immune system responsible for protecting infants from RV reinfection. The relationship between the virus and the B cells (Bc) that produce these antibodies is complex and incompletely understood: most blood-circulating Bc that express RV-specific immunoglobulin (Ig) on their surface (RV-Ig) are naive Bc and recognize the intermediate capsid viral protein VP6 with low affinity. When compared to non-antigen-specific Bc, RV-Bc are enriched in CD27+ memory Bc (mBc) that express IgM. The Ig genes used by naive RV-Bc are different than those expressed by RV-mBc, suggesting that the latter do not primarily develop from the former. Although RV predominantly infects mature villus enterocytes, an acute systemic viremia also occurs and RV-Bc can be thought of as belonging to either the intestinal or systemic immune compartments. Serotype-specific or heterotypic RV antibodies appear to mediate protection by multiple mechanisms, including intracellular and extracellular homotypic and heterotypic neutralization. Passive administration of RV-Ig can be used either prophylactically or therapeutically. A better understanding of the Bc response generated against RV will improve our capacity to identify improved correlates of protection for RV vaccines

    Anharmonicity-induced isostructural phase transition of Zirconium under pressure

    Full text link
    We have performed a detailed x-ray diffraction structural study of Zr under pressure and unambiguously identify the existence of a first-order isostructural bcc-to-bcc phase transition near 58 GPa. First-principles quantum molecular dynamics lattice dynamics calculations support the existence of this phase transition, in excellent agreement with experimental results, triggered by anharmonic effects. Our results highlight the potential ubiquity of anharmonically driven isostructural transitions within the periodic table under pressure and calls for follow-up experimental and theoretical studies

    Rotavirus Structural Proteins and dsRNA Are Required for the Human Primary Plasmacytoid Dendritic Cell IFNα Response

    Get PDF
    Rotaviruses are the leading cause of severe dehydrating diarrhea in children worldwide. Rotavirus-induced immune responses, especially the T and B cell responses, have been extensively characterized; however, little is known about innate immune mechanisms involved in the control of rotavirus infection. Although increased levels of systemic type I interferon (IFNα and β) correlate with accelerated resolution of rotavirus disease, multiple rotavirus strains, including rhesus rotavirus (RRV), have been demonstrated to antagonize type I IFN production in a variety of epithelial and fibroblast cell types through several mechanisms, including degradation of multiple interferon regulatory factors by a viral nonstructural protein. This report demonstrates that stimulation of highly purified primary human peripheral plasmacytoid dendritic cells (pDCs) with either live or inactivated RRV induces substantial IFNα production by a subset of pDCs in which RRV does not replicate. Characterization of pDC responses to viral stimulus by flow cytometry and Luminex revealed that RRV replicates in a small subset of human primary pDCs and, in this RRV-permissive small subset, IFNα production is diminished. pDC activation and maturation were observed independently of viral replication and were enhanced in cells in which virus replicates. Production of IFNα by pDCs following RRV exposure required viral dsRNA and surface proteins, but neither viral replication nor activation by trypsin cleavage of VP4. These results demonstrate that a minor subset of purified primary human peripheral pDCs are permissive to RRV infection, and that pDCs retain functionality following RRV stimulus. Additionally, this study demonstrates trypsin-independent infection of primary peripheral cells by rotavirus, which may allow for the establishment of extraintestinal viremia and antigenemia. Importantly, these data provide the first evidence of IFNα induction in primary human pDCs by a dsRNA virus, while simultaneously demonstrating impaired IFNα production in primary human cells in which RRV replicates. Rotavirus infection of primary human pDCs provides a powerful experimental system for the study of mechanisms underlying pDC-mediated innate immunity to viral infection and reveals a potentially novel dsRNA-dependent pathway of IFNα induction

    A recombinant murine-like rotavirus with Nano-Luciferase expression reveals tissue tropism, replication dynamics, and virus transmission

    Get PDF
    Rotaviruses (RVs) are one of the main causes of severe gastroenteritis, diarrhea, and death in children and young animals. While suckling mice prove to be highly useful small animal models of RV infection and pathogenesis, direct visualization tools are lacking to track the temporal dynamics of RV replication and transmissibilit

    A recombinant murine-like rotavirus with Nano-Luciferase expression reveals tissue tropism, replication dynamics, and virus transmission

    Get PDF
    Rotaviruses (RVs) are one of the main causes of severe gastroenteritis, diarrhea, and death in children and young animals. While suckling mice prove to be highly useful small animal models of RV infection and pathogenesis, direct visualization tools are lacking to track the temporal dynamics of RV replication and transmissibility in vivo. Here, we report the generation of the first recombinant murine-like RV that encodes a Nano-Luciferase reporter (NLuc) using a newly optimized RV reverse genetics system. The NLuc-expressing RV was replication-competent in cell culture and both infectious and virulent in neonatal mice in vivo. Strong luciferase signals were detected in the proximal and distal small intestines, colon, and mesenteric lymph nodes. We showed, via a noninvasive in vivo imaging system, that RV intestinal replication peaked at days 2 to 5 post infection. Moreover, we successfully tracked RV transmission to uninoculated littermates as early as 3 days post infection, 1 day prior to clinically apparent diarrhea and 3 days prior to detectable fecal RV shedding in the uninoculated littermates. We also observed significantly increased viral replication in Stat1 knockout mice that lack the host interferon signaling. Our results suggest that the NLuc murine-like RV represents a non-lethal powerful tool for the studies of tissue tropism and host and viral factors that regulate RV replication and spread, as well as provides a new tool to facilitate the testing of prophylactic and therapeutic interventions in the future

    Rotavirus immune responses and correlates of protection

    Get PDF
    Q1Q1419-425Selected topics in the field of rotavirus immunity are reviewed focusing on recent developments that may improve efficacy and safety of current and future vaccines. Rotaviruses have developed multiple mechanisms to evade interferon-mediated innate immunity. Compared to more developed regions of the world, protection induced by natural infection and vaccination is reduced in developing countries where, among other factors, high viral challenge loads are common and where infants are infected at an early age. Studies in developing countries indicate that rotavirusspecific serum IgA levels are not an optimal correlate of protection following vaccination, and better correlates need to be identified. Protection against rotavirus following vaccination is substantially heterotypic; nonetheless, a role for homotypic immunity in selection of circulating post vaccination strains needs further study

    Intra-arterial cisplatin for the treatment of malignant gliomas

    Full text link
    Cisplatin (DDP) is a chemotherapeutic agent that has shown efficacy against primary CNS malignancies. Intraarterial (IA) administration of DDP to patients with brain tumors should produce higher peak levels of drug than intravenous (IV) administration of an identical dose and reduce systemic toxicity. Twelve patients with malignant glioma were entered into the study. All had failed irradiation, 11 had failed IA BCNU. Each patient received IA DDP, 58–100 mg/m 2 , into the internal carotid artery at four to six week intervals. One of 12 patients had a partial response of 6 months. The remaining 11 patients had progressive disease [10] or severe complications [1]. Toxicity included seizures in four patients, weakness and/or aphasia in four patients, coma in two patients, and visual deterioration in two patients. IA DDP has very limited efficacy in patients with malignant gliomas after failure of nitrosoureas and is associated with an unacceptable level of toxicity. IA DDP may be more effective when used as initial chemotherapy of malignant gliomas.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45394/1/11060_2004_Article_BF00149377.pd

    Inhibitor of growth protein 3 epigenetically silences endogenous retroviral elements and prevents innate immune activation

    Get PDF
    Endogenous retroviruses (ERVs) are subject to transcriptional repression in adult tissues, in part to prevent autoimmune responses. However, little is known about the epigenetic silencing of ERV expression. Here, we describe a new role for inhibitor of growth family member 3 (ING3), to add to an emerging group of ERV transcriptional regulators. Our results show that ING3 binds to several ERV promoters (for instance MER21C) and establishes an EZH2-mediated H3K27 trimethylation modification. Loss of ING3 leads to decreases of H3K27 trimethylation enrichment at ERVs, induction of MDA5-MAVS-interferon signaling, and functional inhibition of several virus infections. These data demonstrate an important new function of ING3 in ERV silencing and contributing to innate immune regulation in somatic cells

    Mucosal and systemic neutralizing antibodies to norovirus induced in infant mice orally inoculated with recombinant rotaviruses

    Get PDF
    Rotaviruses (RVs) preferentially replicate in the small intestine and frequently cause severe diarrheal disease, and the following enteric infection generally induces variable levels of protective systemic and mucosal immune responses in humans and other animals. Rhesus rotavirus (RRV) is a simian RV that was previously used as a human RV vaccine and has been extensively studied in mice. Although RRV replicates poorly in the suckling mouse intestine, infection induces a robust and protective antibody response. The recent availability of plasmid only-based RV reverse genetics systems has enabled the generation of recombinant RVs expressing foreign proteins. However, recombinant RVs have not yet been experimentally tested as potential vaccine vectors to immunize against other gastrointestinal pathogens in viv
    corecore