1,942 research outputs found

    Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon

    Get PDF
    Background: Quorum-sensing regulation of gene expression in Pseudomonas aeruginosa is complex. Two interconnected acyl-homoserine lactone (acyl-HSL) signal-receptor pairs, 3-oxododecanoyl-HSL-LasR and butanoyl-HSL-RhlR, regulate more than 300 genes. The induction of most of the genes is delayed during growth of P. aeruginosa in complex medium, cannot be advanced by addition of exogenous signal, and requires additional regulatory components. Many of these late genes can be induced by addition of signals early by using specific media conditions. While several factors super-regulate the quorum receptors, others may co-regulate target promoters or may affect expression posttranscriptionally. Results: To better understand the contributions of super-regulation and co-regulation to quorumsensing gene expression, and to better understand the general structure of the quorum sensing network, we ectopically expressed the two receptors (in the presence of their cognate signals) and another component that affects quorum sensing, the stationary phase sigma factor RpoS, early in growth. We determined the effect on target gene expression by microarray and real-time PCR analysis. Our results show that many target genes (e.g. lasB and hcnABC) are directly responsive to receptor protein levels. Most genes (e.g. lasA, lecA, and phnAB), however, are not significantly affected, although at least some of these genes are directly regulated by quorum sensing. The majority of promoters advanced by RhlR appeared to be regulated directly, which allowed us to build a RhlR consensus sequence. Conclusion: The direct responsiveness of many quorum sensing target genes to receptor protein levels early in growth confirms the role of super-regulation in quorum sensing gene expression. The observation that the induction of most target genes is not affected by signal or receptor protein levels indicates that either target promoters are co-regulated by other transcription factors, or that expression is controlled posttranscriptionally. This architecture permits the integration of multiple signaling pathways resulting in quorum responses that require a "quorum" but are otherwise highly adaptable and receptive to environmental conditions.USPHS grant GM-59026

    The Chemistry and Biology of Bactobolin: A 10-Year Collaboration with Natural Product Chemist Extraordinaire Jon Clardy

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Natural Products, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see doi.org/10.1021/acs.jnatprod.9b01237.Bactobolin is a hybrid natural product with potent cytotoxic activity. Its production from Burkholderia thailandensis was reported as part of a collaboration between the Greenberg and Clardy laboratories in 2010. The collaboration sparked a series of studies leading to the discovery of new analogues and associated structure–activity relationships, the identification of the bactobolin biosynthetic gene cluster and assembly of its unusual amino acid building block, the molecular target of and resistance to the antibiotic, and finally an X-ray crystal structure of the ribosome–bactobolin complex. Herein, we review the collaborations that led to our current understanding of the chemistry and biology of bactobolin

    The fitness of pseudomonas aeruginosa quorum sensing signal cheats is influenced by the diffusivity of the environment

    Get PDF
    Experiments examining the social dynamics of bacterial quorum sensing (QS) have focused on mutants which do not respond to signals and the role of QS-regulated exoproducts as public goods. The potential for QS signal molecules to themselves be social public goods has received much less attention. Here, we analyze how signal-deficient (lasI) mutants of the opportunistic pathogen Pseudomonas aeruginosa interact with wild-type cells in an environment where QS is required for growth. We show that when growth requires a “private” intracellular metabolic mechanism activated by the presence of QS signal, lasI mutants act as social cheats and outcompete signal-producing wild-type bacteria in mixed cultures, because they can exploit the signals produced by wild-type cells. However, reducing the ability of signal molecules to diffuse through the growth medium results in signal molecules becoming less accessible to mutants, leading to reduced cheating. Our results indicate that QS signal molecules can be considered social public goods in a way that has been previously described for other exoproducts but that spatial structuring of populations reduces exploitation by noncooperative signal cheats

    A Burkholderia thailandensis Acyl-Homoserine Lactone-Independent Orphan LuxR Homolog That Activates Production of the Cytotoxin Malleilactone

    Get PDF
    Copyright © 2015, American Society for Microbiology. All Rights Reserved.Burkholderia thailandensis has three acyl-homoserine lactone (AHL) LuxR-LuxI quorum-sensing circuits and two orphan LuxR homologs. Orphans are LuxR-type transcription factors that do not have cognate LuxI-type AHL synthases. One of the orphans, MalR, is genetically linked to the mal gene cluster, which encodes enzymes required for production of the cytotoxic polyketide malleilactone. Under normal laboratory conditions the mal gene cluster is silent; however, antibiotics like trimethoprim induce mal transcription. We show that trimethoprim-dependent induction of the mal genes requires MalR. MalR has all of the conserved amino acid residues characteristic of AHL-responsive LuxR homologs, but in B. thailandensis, MalR activation of malleilactone synthesis genes is not responsive to AHLs. MalR can activate transcription from the mal promoter in E. coli without addition of AHLs or trimethoprim. Expression of malR in B. thailandensis is induced by trimethoprim. Our data indicate that MalR binds to a lux box-like element in the mal promoter and activates transcription of the mal genes in an AHL-independent manner. Antibiotics like trimethoprim appear to activate mal gene expression indirectly by somehow activating malR expression. MalR activation of the mal genes represents an example of a LuxR homolog that is not a receptor for an AHL quorum-sensing signal. Our evidence is consistent with the idea that mal gene activation depends solely on sufficient transcription of the malR gene

    Molecular Basis for the Substrate Specificity of Quorum Signal Synthases

    Get PDF
    In several Proteobacteria, LuxI-type enzymes catalyze the biosynthesis of acyl–homoserine lactones (AHL) signals using S-adenosyl– L-methionine and either cellular acyl carrier protein (ACP)-coupled fatty acids or CoA–aryl/acyl moieties as progenitors. Little is known about the molecular mechanism of signal biosynthesis, the basis for substrate specificity, or the rationale for donor specificity for any LuxI member. Here, we present several cocrystal structures of BjaI, a CoAdependent LuxI homolog that represent views of enzyme complexes that exist along the reaction coordinate of signal synthesis. Complementary biophysical, structure–function, and kinetic analysis define the features that facilitate the unusual acyl conjugation with S-adenosylmethionine (SAM). We also identify the determinant that establishes specificity for the acyl donor and identify residues that are critical for acyl/aryl specificity. These results highlight howa prevalent scaffold has evolved to catalyze quorum signal synthesis and provide a framework for the design of small-molecule antagonists of quorum signaling

    A rhlI 5′ UTR-Derived sRNA Regulates RhlR-Dependent Quorum Sensing in Pseudomonas aeruginosa

    Get PDF
    N-Acyl homoserine lactone (AHL) quorum sensing (QS) controls expression of over 200 genes in Pseudomonas aeruginosa. There are two AHL regulatory systems: the LasR-LasI circuit and the RhlR-RhlI system. We mapped transcription termination sites affected by AHL QS in P. aeruginosa, and in doing so we identified AHL-regulated small RNAs (sRNAs). Of interest, we noted that one particular sRNA was located within the rhlI locus. We found that rhlI, which encodes the enzyme that produces the AHL N-butanoyl-homoserine lactone (C4-HSL), is controlled by a 5′ untranslated region (UTR)-derived sRNA we name RhlS. We also identified an antisense RNA encoded opposite the beginning of the rhlI open reading frame, which we name asRhlS. RhlS accumulates as wild-type cells enter stationary phase and is required for the production of normal levels of C4-HSL through activation of rhlI translation. RhlS also directly posttranscriptionally regulates at least one other unlinked gene, fpvA. The asRhlS appears to be expressed at maximal levels during logarithmic growth, and we suggest RhlS may act antagonistically to the asRhlS to regulate rhlI translation. The rhlI-encoded sRNAs represent a novel aspect of RNA-mediated tuning of P. aeruginosa QS

    Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production

    Get PDF
    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. IMPORTANCE The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for investigating questions in Burkholderia physiology. In this study, we characterized B. thailandensis biofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows that B. thailandensis produces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience of B. thailandensis biofilms against changes in the nutritional environment
    corecore