1,980 research outputs found

    Improved Algorithms for Radar-based Reconstruction of Asteroid Shapes

    Full text link
    We describe our implementation of a global-parameter optimizer and Square Root Information Filter (SRIF) into the asteroid-modelling software SHAPE. We compare the performance of our new optimizer with that of the existing sequential optimizer when operating on various forms of simulated data and actual asteroid radar data. In all cases, the new implementation performs substantially better than its predecessor: it converges faster, produces shape models that are more accurate, and solves for spin axis orientations more reliably. We discuss potential future changes to improve SHAPE's fitting speed and accuracy.Comment: 12 pages, 9 figure

    Yarkovsky Drift Detections for 247 Near-Earth Asteroids

    Full text link
    The Yarkovsky effect is a thermal process acting upon the orbits of small celestial bodies, which can cause these orbits to slowly expand or contract with time. The effect is subtle (da/dt ~ 10^-4 au/My for a 1 km diameter object) and is thus generally difficult to measure. We analyzed both optical and radar astrometry for 600 near-Earth asteroids (NEAs) for the purpose of detecting and quantifying the Yarkovsky effect. We present 247 NEAs with measured drift rates, which is the largest published set of Yarkovsky detections. This large sample size provides an opportunity to examine the Yarkovsky effect in a statistical manner. In particular, we describe two independent population-based tests that verify the measurement of Yarkovsky orbital drift. First, we provide observational confirmation for the Yarkovsky effect's theoretical size dependence of 1/D, where D is diameter. Second, we find that the observed ratio of negative to positive drift rates in our sample is 2.34, which, accounting for bias and sampling uncertainty, implies an actual ratio of 2.70.7+0.32.7^{+0.3}_{-0.7}. This ratio has a vanishingly small probability of occurring due to chance or statistical noise. The observed ratio of retrograde to prograde rotators is two times lower than the ratio expected from numerical predictions from NEA population studies and traditional assumptions about the sense of rotation of NEAs originating from various main belt escape routes. We also examine the efficiency with which solar energy is converted into orbital energy and find a median efficiency in our sample of 12%. We interpret this efficiency in terms of NEA spin and thermal properties.Comment: 27 pages, 9 figures, published in the Astronomical Journal, 159, 92, 202

    A search for technosignatures from 14 planetary systems in the Kepler field with the Green Bank Telescope at 1.15-1.73 GHz

    Full text link
    Analysis of Kepler mission data suggests that the Milky Way includes billions of Earth-like planets in the habitable zone of their host star. Current technology enables the detection of technosignatures emitted from a large fraction of the Galaxy. We describe a search for technosignatures that is sensitive to Arecibo-class transmitters located within ~420 ly of Earth and transmitters that are 1000 times more effective than Arecibo within ~13 000 ly of Earth. Our observations focused on 14 planetary systems in the Kepler field and used the L-band receiver (1.15-1.73 GHz) of the 100 m diameter Green Bank Telescope. Each source was observed for a total integration time of 5 minutes. We obtained power spectra at a frequency resolution of 3 Hz and examined narrowband signals with Doppler drift rates between +/-9 Hz/s. We flagged any detection with a signal-to-noise ratio in excess of 10 as a candidate signal and identified approximately 850 000 candidates. Most (99%) of these candidate signals were automatically classified as human-generated radio-frequency interference (RFI). A large fraction (>99%) of the remaining candidate signals were also flagged as anthropogenic RFI because they have frequencies that overlap those used by global navigation satellite systems, satellite downlinks, or other interferers detected in heavily polluted regions of the spectrum. All 19 remaining candidate signals were scrutinized and none were attributable to an extraterrestrial source.Comment: 15 pages, 5 figures, accepted for publication in the Astronomical Journa

    Towards a Theoretical Framework for Understanding the Development of Media Related Needs

    Get PDF
    The question of why people select and prefer particular media activities has led to the development of a number of ‘needs’ approaches to media use. Whilst some frameworks have been developed within the context of media use (e.g. uses and gratifications), others (e.g. Tamborini et al, 2011) look to combine general theories of basic human needs, such as Self-Determination Theory (Deci &Ryan, 1985) with hedonic gratifications. Drawing on these approaches, a framework is proposed that maps findings from children’s and adolescents’ media use to four basic human needs: competence, autonomy, relatedness and hedonic needs. The current paper argues that a basic needs approach is useful for understanding how media-related needs emerge and are expressed through development

    Overview of the SME: Implications and Phenomenology of Lorentz Violation

    Full text link
    The Standard Model Extension (SME) provides the most general observer-independent field theoretical framework for investigations of Lorentz violation. The SME lagrangian by definition contains all Lorentz-violating interaction terms that can be written as observer scalars and that involve particle fields in the Standard Model and gravitational fields in a generalized theory of gravity. This includes all possible terms that could arise from a process of spontaneous Lorentz violation in the context of a more fundamental theory, as well as terms that explicitly break Lorentz symmetry. An overview of the SME is presented, including its motivations and construction. Some of the theoretical issues arising in the case of spontaneous Lorentz violation are discussed, including the question of what happens to the Nambu-Goldstone modes when Lorentz symmetry is spontaneously violated and whether a Higgs mechanism can occur. A minimal version of the SME in flat Minkowski spacetime that maintains gauge invariance and power-counting renormalizability is used to search for leading-order signals of Lorentz violation. Recent Lorentz tests in QED systems are examined, including experiments with photons, particle and atomic experiments, proposed experiments in space and experiments with a spin-polarized torsion pendulum.Comment: 40 pages, Talk presented at Special Relativity: Will it Survive the Next 100 Years? Potsdam, Germany, February, 200

    Probing Lorentz and CPT violation with space-based experiments

    Get PDF
    Space-based experiments offer sensitivity to numerous unmeasured effects involving Lorentz and CPT violation. We provide a classification of clock sensitivities and present explicit expressions for time variations arising in such experiments from nonzero coefficients in the Lorentz- and CPT-violating Standard-Model Extension.Comment: 15 page

    Generalized Relativistic Meson Wave Function

    Full text link
    We study the most general, relativistic, constituent qqq{\overline q} meson wave function within a new covariant framework. We find that by including a tensor wave function component, a pure valence quark model is now capable of reproducing not only all static pion data (fπf_\pi, rπ2\langle r_\pi^2 \rangle) but also the distribution amplitude, form factor (Fπ(Q2))(F_\pi(Q^2)), and structure functions. Further, our generalized spin wave function provides a much better detailed description of meson properties than models using a simple relativistic extension of the S=L=0S=L=0 nonrelativistic wave function.Comment: 17 pages, REXTeX 3.0 file, (uuencoded postscript files of 8 figures appended

    Threshold analyses and Lorentz violation

    Full text link
    In the context of threshold investigations of Lorentz violation, we discuss the fundamental principle of coordinate invariance, the role of an effective dynamical framework, and the conditions of positivity and causality. Our analysis excludes a variety of previously considered Lorentz-breaking parameters and opens an avenue for viable dispersion-relation investigations of Lorentz violation.Comment: 9 page

    A search for technosignatures from TRAPPIST-1, LHS 1140, and 10 planetary systems in the Kepler field with the Green Bank Telescope at 1.15-1.73 GHz

    Get PDF
    As part of our ongoing search for technosignatures, we collected over three terabytes of data in May 2017 with the L-band receiver (1.15-1.73 GHz) of the 100 m diameter Green Bank Telescope. These observations focused primarily on planetary systems in the Kepler field, but also included scans of the recently discovered TRAPPIST-1 and LHS 1140 systems. We present the results of our search for narrowband signals in this data set with techniques that are generally similar to those described by Margot et al. (2018). Our improved data processing pipeline classified over 98%98\% of the \sim 6 million detected signals as anthropogenic Radio Frequency Interference (RFI). Of the remaining candidates, 30 were detected outside of densely populated frequency regions attributable to RFI. These candidates were carefully examined and determined to be of terrestrial origin. We discuss the problems associated with the common practice of ignoring frequency space around candidate detections in radio technosignature detection pipelines. These problems include inaccurate estimates of figures of merit and unreliable upper limits on the prevalence of technosignatures. We present an algorithm that mitigates these problems and improves the efficiency of the search. Specifically, our new algorithm increases the number of candidate detections by a factor of more than four compared to Margot et al. (2018).Comment: 17 pages, 9 figure
    corecore