29 research outputs found
Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity
Limited knowledge is available on the relationship between antigen-specific immune responses and COVID-19 disease severity. We completed a combined examination of all three branches of adaptive immunity at the level of SARS-CoV-2-specific CD4+ and CD8+ T cell and neutralizing antibody responses in acute and convalescent subjects. SARS-CoV-2-specific CD4+ and CD8+ T cells were each associated with milder disease. Coordinated SARS-CoV-2-specific adaptive immune responses were associated with milder disease, suggesting roles for both CD4+ and CD8+ T cells in protective immunity in COVID-19. Notably, coordination of SARS-CoV-2 antigen-specific responses was disrupted in individuals ≥ 65 years old. Scarcity of naive T cells was also associated with aging and poor disease outcomes. A parsimonious explanation is that coordinated CD4+ T cell, CD8+ T cell, and antibody responses are protective, but uncoordinated responses frequently fail to control disease, with a connection between aging and impaired adaptive immune responses to SARS-CoV-2
Proceedings of the 2016 Childhood Arthritis and Rheumatology Research Alliance (CARRA) Scientific Meeting
Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases
T cells are involved in control of SARS-CoV-2 infection. To establish the patterns of immunodominance of different SARS-CoV-2 antigens, and precisely measure virus-specific CD4+ and CD8+ T cells, we study epitope-specific T cell responses of 99 convalescent COVID-19 cases. The SARS-CoV-2 proteome is probed using 1,925 peptides spanning the entire genome, ensuring an unbiased coverage of HLA alleles for class II responses. For HLA class I, we study an additional 5,600 predicted binding epitopes for 28 prominent HLA class I alleles, accounting for wide global coverage. We identify several hundred HLA-restricted SARS-CoV-2-derived epitopes. Distinct patterns of immunodominance are observed, which differ for CD4+ T cells, CD8+ T cells, and antibodies. The class I and class II epitopes are combined into epitope megapools to facilitate identification and quantification of SARS-CoV-2-specific CD4+ and CD8+ T cells
Developmental Maturity Expectations of Israeli Fathers and Mothers: Effects of Education, Ethnic Origin, and Religiosity
Ultrasound-guided, minimally invasive, percutaneous needle puncture treatment for tennis elbow
Recommended from our members
Searching for Planets Orbiting Fomalhaut with JWST/NIRCam
We report observations with the JWST/NIRCam coronagraph of the Fomalhaut (α PsA) system. This nearby A star hosts a complex debris disk system discovered by the IRAS satellite. Observations in F444W and F356W filters using the round 430R mask achieve a contrast ratio of ∼4 × 10−7 at 1″ and ∼4 × 10−8 outside of 3″. These observations reach a sensitivity limit of 0.7 mag (Vega) color. Whether this object is a background galaxy, brown dwarf, or a Jovian-mass planet in the Fomalhaut system will be determined by an approved Cycle 2 follow-up program. Finally, we set upper limits to any scattered light from the outer ring, placing a weak limit on the dust albedo at F356W and F444W. © 2023. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans
Many unknowns exist about human immune responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2–reactive CD4+ T cells have been reported in unexposed individuals, suggesting preexisting cross-reactive T cell memory in 20 to 50% of people. However, the source of those T cells has been speculative. Using human blood samples derived before the SARS-CoV-2 virus was discovered in 2019, we mapped 142 T cell epitopes across the SARS-CoV-2 genome to facilitate precise interrogation of the SARS-CoV-2–specific CD4+ T cell repertoire. We demonstrate a range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Thus, variegated T cell memory to coronaviruses that cause the common cold may underlie at least some of the extensive heterogeneity observed in coronavirus disease 2019 (COVID-19) disease
