64,568 research outputs found

    The low energy expansion of the one-loop type II superstring amplitude

    Get PDF
    The one-loop four-graviton amplitude in either of the type II superstring theories is expanded in powers of the external momenta up to and including terms of order s^4 log s R^4, where R^4 denotes a specific contraction of four linearized Weyl tensors and s is a Mandelstam invariant. Terms in this series are obtained by integrating powers of the two-dimensional scalar field theory propagator over the toroidal world-sheet as well as the moduli of the torus. The values of these coefficients match expectations based on duality relations between string theory and eleven-dimensional supergravity.Comment: harvmac (b), 25 pages, 3 eps figures. v2: Factors of 2 corrected. Conclusion unchange

    Gauge symmetries decrease the number of Dp-brane dimensions

    Full text link
    It is known that the presence of antisymmetric background field BΌΜB_{\mu\nu} leads to noncommutativity of Dp-brane manifold. Addition of the linear dilaton field in the form Ί(x)=Ί0+aÎŒxÎŒ\Phi(x)=\Phi_0+a_\mu x^\mu, causes the appearance of the commutative Dp-brane coordinate x=aÎŒxÎŒx=a_\mu x^\mu. In the present article we show that for some particular choices of the background fields, a2≡GΌΜaÎŒaÎœ=0a^2\equiv G^{\mu\nu}a_\mu a_\nu=0 and $\tilde a^2\equiv [ (G-4BG^{-1}B)^{-1}\ ]^{\mu\nu}a_\mu a_\nu=0$, the local gauge symmetries appear in the theory. They turn some Neuman boundary conditions into the Dirichlet ones, and consequently decrease the number of the Dp-brane dimensions.Comment: We improve Sec.4. and Conclusion and we added the Appendix in order to clarify result

    String Bit Models for Superstring

    Get PDF
    We extend the model of string as a polymer of string bits to the case of superstring. We mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string we work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D−2)+1(D-2)+1 dimensional space-time. This means that Poincar\'e invariance is reduced to the Galilei subgroup in D−2D-2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in DD dimensional space-time enjoying the full N=2N=2 Poincar\'e supersymmetric dynamics of type II-B superstring.Comment: 43 pages, phyzzx require

    Supersymmetry Constraints on Type IIB Supergravity

    Full text link
    Supersymmetry is used to derive conditions on higher derivative terms in the effective action of type IIB supergravity. Using these conditions, we are able to prove earlier conjectures that certain modular invariant interactions of order alpha' **3 relative to the Einstein-Hilbert term are proportional to eigenfunctions of the Laplace operator on the fundamental domain of SL(2,Z). We also discuss how these arguments generalize to terms of higher order in alpha', as well as to compactifications of supergravity.Comment: 31 pages, harvmac (b); minor correction

    Teacher Leader Administrators: Part 3 Of A Symposium On Teachers As Leaders

    Get PDF
    In this latest continuation of our multipart symposium on teacher leadership, we examine what happens when self-defined teacher leaders become school administrators. Do teacher leaders who become administrators maintain a teacher identity? Can they remain committed to their vision of teacher leadership when they take on the normative requirements and responsibilities of school administration? Through a conversation with three teachers leaders, we explore the rewards and trials of teaching, the choice to become teacher leaders and then administrators, and the unique challenges that face administrators who deeply value the professional, political, and collaborative work of teachers

    Remarks on the Classical Size of D-Branes

    Get PDF
    We discuss different criteria for `classical size' of extremal Dirichlet p-branes in type-II supergravity. Using strong-weak coupling duality, we find that the size of the strong-coupling region at the core of the (p<3)-branes, is always given by the asymptotic string scale, if measured in the weakly coupled dual string metric. We also point out how the eleven-dimensional Planck scale arises in the classical 0-brane solution, as well as the ten-dimensional Planck scale in the D-instanton solution.Comment: 8 pp, harvma

    Galois covers of the open p-adic disc

    Full text link
    This paper investigates Galois branched covers of the open pp-adic disc and their reductions to characteristic pp. Using the field of norms functor of Fontaine and Wintenberger, we show that the special fiber of a Galois cover is determined by arithmetic and geometric properties of the generic fiber and its characteristic zero specializations. As applications, we derive a criterion for good reduction in the abelian case, and give an arithmetic reformulation of the local Oort Conjecture concerning the liftability of cyclic covers of germs of curves.Comment: 19 pages; substantial organizational and expository changes; this is the final version corresponding to the official publication in Manuscripta Mathematica; abstract update

    Combinatorics of Boundaries in String Theory

    Get PDF
    We investigate the possibility that stringy nonperturbative effects appear as holes in the world-sheet. We focus on the case of Dirichlet string theory, which we argue should be formulated differently than in previous work, and we find that the effects of boundaries are naturally weighted by e−O(1/gst)e^{-O(1/g_{\rm st})}.Comment: 12 pages, 2 figures, LaTe

    Mass corrections in string theory and lattice field theory

    Get PDF
    Kaluza-Klein compactifications of higher dimensional Yang-Mills theories contain a number of four dimensional scalars corresponding to the internal components of the gauge field. While at tree-level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1-loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK--modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius RR is much bigger than the scale of the UV completion (R≫αâ€Č,aR \gg \sqrt{\alpha'},a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2,4\mathcal N=2,4 Super Yang-Mills is highly suppressed due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.Comment: 27 page
    • 

    corecore