2,580 research outputs found

    The magnetic field environment of active region 12673 that produced the energetic particle events of September 2017

    Get PDF
    Forecasting solar energetic particles (SEPs), and identifying flare/CMEs from active regions (ARs) that will produce SEP events in advance is extremely challenging. We investigate the magnetic field environment of AR 12673, including the AR's magnetic configuration, the surrounding field configuration in the vicinity of the AR, the decay index profile, and the footpoints of Earth-connected magnetic field, around the time of four eruptive events. Two of the eruptive events are SEP-productive (2017 September 4 at 20:00~UT and September 6 at 11:56~UT), while two are not (September 4 at 18:05~UT and September 7 at 14:33~UT). We analysed a range of EUV and white-light coronagraph observations along with potential field extrapolations and find that the CMEs associated with the SEP-productive events either trigger null point reconnection that redirects flare-accelerated particles from the flare site to the Earth-connected field and/or have a significant expansion (and shock formation) into the open Earth-connected field. The rate of change of the decay index with height indicates that the region could produce a fast CME (v>v > 1500~km~s1^{-1}), which it did during events two and three. The AR's magnetic field environment, including sites of open magnetic field and null points along with the magnetic field connectivity and propagation direction of the CMEs play an important role in the escape and arrival of SEPs at Earth. Other SEP-productive ARs should be investigated to determine whether their magnetic field environment and CME propagation direction are significant in the escape and arrival of SEPs at Earth.Comment: Accepted in ApJ, 18 pages, 8 Figures, 2 Table

    An Interdisciplinary Approach to Community-Engaged Research Surrounding Lead in Drinking Water in the Mississippi Delta

    Get PDF
    Childhood lead poisoning is a problem requiring interdisciplinary attention from toxicology, public health, social sciences, environmental law, and policy. In the U.S., Mississippi was ranked as one of the worst states for lead poisoning with limited childhood screening measures. We conducted community-engaged research by working with leaders in the largely rural Mississippi Delta region from 2016-2019 to collect household water samples and questionnaires and involve their communities in lead poisoning risk awareness and outreach. Drinking water from 213 homes was collected and analyzed for pH and lead concentrations. Highest lead concentrations were from households served by private wells, and detectable concentrations at or above 0.09 ppb were found in 66.2 percent of all samples. Nine samples exceeded 5 ppb, and these households received certified sink filters. Findings indicated that community-engaged research and outreach could be used to address data gaps relating to lead in drinking water in rural decentralized water systems

    The Merging of a Coronal Dimming and the Southern Polar Coronal Hole

    Get PDF
    We report on the merging between the southern polar coronal hole and an adjacent coronal dimming induced by a coronal mass ejection on 2022 March 18, resulting in the merged region persisting for at least 72 hr. We use remote sensing data from multiple co-observing spacecraft to understand the physical processes during this merging event. The evolution of the merger is examined using Extreme-UltraViolet (EUV) images obtained from the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory and Extreme Ultraviolet Imager, which is on board the Solar Orbiter spacecraft. The plasma dynamics are quantified using spectroscopic data obtained from the EUV Imaging Spectrometer on board Hinode. The photospheric magnetograms from the Helioseismic and Magnetic Imager are used to derive the magnetic field properties. To our knowledge, this work is the first spectroscopical analysis of the merging of two open-field structures. We find that the coronal hole and the coronal dimming become indistinguishable after the merging. The upflow speeds inside the coronal dimming become more similar to that of a coronal hole, with a mixture of plasma upflows and downflows observable after the merging. The brightening of the bright points and the appearance of coronal jets inside the merged region further imply ongoing reconnection processes. We propose that component reconnection between the coronal hole and coronal dimming fields plays an important role during this merging event because the footpoint switching resulting from the reconnection allows the coronal dimming to intrude onto the boundary of the southern polar coronal hole

    Towards an Understanding of Changing-Look Quasars: An Archival Spectroscopic Search in SDSS

    Full text link
    The uncertain origin of the recently-discovered `changing-looking' quasar phenomenon -- in which a luminous quasar dims significantly to a quiescent state in repeat spectroscopy over ~10 year timescales -- may present unexpected challenges to our understanding of quasar accretion. To better understand this phenomenon, we take a first step to building a sample of changing-look quasars with a systematic but simple archival search for these objects in the Sloan Digital Sky Survey Data Release 12. By leveraging the >10 year baselines for objects with repeat spectroscopy, we uncover two new changing-look quasars, and a third discovered previously. Decomposition of the multi-epoch spectra and analysis of the broad emission lines suggest that the quasar accretion disk emission dims due to rapidly decreasing accretion rates (by factors of >2.5), while disfavoring changes in intrinsic dust extinction for the two objects where these analyses are possible. Broad emission line energetics also support intrinsic dimming of quasar emission as the origin for this phenomenon rather than transient tidal disruption events or supernovae. Although our search criteria included quasars at all redshifts and transitions from either quasar-like to galaxy-like states or the reverse, all of the clear cases of changing-look quasars discovered were at relatively low-redshift (z ~ 0.2 - 0.3) and only exhibit quasar-like to galaxy-like transitions.Comment: 15 pages, 8 figures. Updated to accepted versio

    Widespread nitrogen fixation in sediments from diverse deep-sea sites of elevated carbon loading

    Get PDF
    Nitrogen fixation, the biological conversion of N_2 to NH_3, is critical to alleviating nitrogen limitation in many marine ecosystems. To date, few measurements exist of N_2 fixation in deep‐sea sediments. Here, we conducted > 400 bottle incubations with sediments from methane seeps, whale falls and background sites off the western coast of the United States from 600 to 2893 m water depth to investigate the potential rates, spatial distribution and biological mediators of benthic N_2 fixation. We found that N2 fixation was widespread, yet heterogeneously distributed with sediment depth at all sites. In some locations, rates exceeded previous measurements by > 10×, and provided up to 30% of the community anabolic growth requirement for nitrogen. Diazotrophic activity appeared to be inhibited by pore water ammonium: N_2 fixation was only observed if incubation ammonium concentrations were ≤ 25 μM, and experimental additions of ammonium reduced diazotrophy. In seep sediments, N_2 fixation was dependent on CH_4 and coincident with sulphate reduction, consistent with previous work showing diazotrophy by microorganisms mediating sulphate‐coupled methane oxidation. However, the pattern of diazotrophy was different in whale‐fall and associated reference sediments, where it was largely unaffected by CH_4, suggesting catabolically different diazotrophs at these sites

    Osteopontin Alleles Are Associated with Clinical Characteristics in Systemic Lupus Erythematosus

    Get PDF
    Variants of the osteopontin (OPN) gene have been associated with systemic lupus erythematosus (SLE) susceptibility and cytokine profiles in SLE patients. It is not known whether these alleles are associated with specific clinical phenotypes in SLE. We studied 252 well-characterized SLE patients from a multiethnic cohort, genotyping the rs11730582, rs28357094, rs6532040, and rs9138 SNPs in the OPN gene. Ancestry informative markers were used to control for genetic ancestry. The SLE-risk allele rs9138C in the 3′ UTR region was associated with photosensitivity in lupus patients across all ancestral backgrounds (meta-analysis OR = 3.2, 95% CI = 1.6–6.5, P = 1.0 × 10−3). Additionally, the promoter variant rs11730582C demonstrated suggestive evidence for association with two hematologic traits: thrombocytopenia (OR = 2.1, P = 0.023) and hemolytic anemia (OR = 2.6, P = 0.036). These clinical associations with SNPs in the promoter and 3′ UTR regions align with previously reported SLE-susceptibility SNPs in OPN and suggest potential roles for these variants in antibody-mediated cytopenias and skin inflammation in SLE
    corecore