46,093 research outputs found

    Ballistic transport is dissipative: the why and how

    Full text link
    In the ballistic limit, the Landauer conductance steps of a mesoscopic quantum wire have been explained by coherent and dissipationless transmission of individual electrons across a one-dimensional barrier. This leaves untouched the central issue of conduction: a quantum wire, albeit ballistic, has finite resistance and so must dissipate energy. Exactly HOW does the quantum wire shed its excess electrical energy? We show that the answer is provided, uniquely, by many-body quantum kinetics. Not only does this inevitably lead to universal quantization of the conductance, in spite of dissipation; it fully resolves a baffling experimental result in quantum-point-contact noise. The underlying physics rests crucially upon the action of the conservation laws in these open metallic systems.Comment: Invited Viewpoint articl

    Indirect observation of unobservable interstellar molecules

    Get PDF
    It is suggested that the abundances of neutral non-polar interstellar molecules unobservable by radio astronomy can be systematically determined by radio observation of the protonated ions. As an example, observed N2H(+) column densities are analyzed to infer molecular nitrogen abundances in dense interstellar clouds. The chemistries and expected densities of the protonated ions of O2, C2, CO2, C2H2 and CH4 are then discussed. Microwave transition frequencies fo HCO2(+) and C2H3(+) are estimated, and a preliminary astronomical search for HCO2(+) is described

    A semianalytical satellite theory for weak time-dependent perturbations

    Get PDF
    The modifications of the semianalytical satellite theory required to include these 'weak' time dependent perturbations are described. The new formulation results in additional terms in the short periodic variations but does not change the averaged equations of motion. Thus the m monthly terms are still included in the averaged equations of motion. This contrasts with the usual approach for the strongly time dependent perturbations in which the m monthly (or m daily, if tesseral harmonics are being considered) terms would be eliminated from the averaged equations of motion and included in the short periodics computation. Numerical test results for the GPS case obtained with a numerical averaging implementation of the new theory demonstrate the accuracy improvement

    Quantum and Classical in Adiabatic Computation

    Get PDF
    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialised state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose groundstate encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimisation algorithms and quantum adiabatic optimisation. This new perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing - though inconclusive - results

    Monitoring of crack growth in Ti-Al-4v alloy by the stress wave analysis technique

    Get PDF
    Stress wave analysis techniques for monitoring crack growth in Ti-6Al-4V alloy pressure vessel wall

    Coulomb screening in mesoscopic noise: a kinetic approach

    Full text link
    Coulomb screening, together with degeneracy, is characteristic of the metallic electron gas. While there is little trace of its effects in transport and noise in the bulk, at mesoscopic scales the electronic fluctuations start to show appreciable Coulomb correlations. Within a strictly standard Boltzmann and Fermi-liquid framework, we analyze these phenomena and their relation to the mesoscopic fluctuation-dissipation theorem, which we prove. We identify two distinct screening mechanisms for mesoscopic fluctuations. One is the self-consistent response of the contact potential in a non-uniform system. The other couples to scattering, and is an exclusively non-equilibrium process. Contact-potential effects renormalize all thermal fluctuations, at all scales. Collisional effects are relatively short-ranged and modify non-equilibrium noise. We discuss ways to detect these differences experimentally.Comment: Source: REVTEX. 16 pp.; 7 Postscript figs. Accepted for publication in J. Phys.: Cond. Ma

    The Molonglo Galactic Plane Survey (MGPS-2): Compact Source Catalogue

    Full text link
    We present the first data release from the second epoch Molonglo Galactic Plane Survey (MGPS-2). MGPS-2 was carried out with the Molonglo Observatory Synthesis Telescope at a frequency of 843 MHz and with a restoring beam of 45 arcsec x 45 arcsec cosec(dec), making it the highest resolution large scale radio survey of the southern Galactic plane. It covers the range |b| < 10 deg and 245 deg < l < 365 deg and is the Galactic counterpart to the Sydney University Molonglo Sky Survey (SUMSS) which covers the whole southern sky with dec 10 deg). In this paper we present the MGPS-2 compact source catalogue. The catalogue has 48,850 sources above a limiting peak brightness of 10 mJy/beam. Positions in the catalogue are accurate to 1 arcsec - 2 arcsec. A full catalogue including extended sources is in preparation. We have carried out an analysis of the compact source density across the Galactic plane and find that the source density is not statistically higher than the density expected from the extragalactic source density alone. We also present version 2.0 of the SUMSS image data and catalogue which are now available online. The data consists of 629 4.3 deg x 4.3 deg mosaic images covering the 8100 deg^2 of sky with dec 10 deg. The catalogue contains 210,412 radio sources to a limiting peak brightness of 6 mJy/beam at dec -50 deg. We describe the updates and improvements made to the SUMSS cataloguing process.Comment: 12 pages, 9 figures, to be published in MNRAS Note that Figures 8 and 9 are much lower resolution than in the published versio

    What is novel in quantum transport for mesoscopics?

    Full text link
    The understanding of mesoscopic transport has now attained an ultimate simplicity. Indeed, orthodox quantum kinetics would seem to say little about mesoscopics that has not been revealed - nearly effortlessly - by more popular means. Such is far from the case, however. The fact that kinetic theory remains very much in charge is best appreciated through the physics of a quantum point contact. While discretization of its conductance is viewed as the exclusive result of coherent, single-electron-wave transmission, this does not begin to address the paramount feature of all metallic conduction: dissipation. A perfect quantum point contact still has finite resistance, so its ballistic carriers must dissipate the energy gained from the applied field. How do they manage that? The key is in standard many-body quantum theory, and its conservation principles.Comment: 10 pp, 3 figs. Invited talk at 50th Golden Jubilee DAE Symposium, BARC, Mumbai, 200

    Four-quark flux distribution and binding in lattice SU(2)

    Get PDF
    The full spatial distribution of the color fields of two and four static quarks is measured in lattice SU(2) field theory at separations up to 1 fm at beta=2.4. The four-quark case is equivalent to a qbar q qbar q system in SU(2) and is relevant to meson-meson interactions. By subtracting two-body flux tubes from the four-quark distribution we isolate the flux contribution connected with the four-body binding energy. This contribution is further studied using a model for the binding energies. Lattice sum rules for two and four quarks are used to verify the results.Comment: 46 pages including 71 eps figures. 3D color figures are available at www.physics.helsinki.fi/~ppennane/pics

    Second year technical report on-board processing for future satellite communications systems

    Get PDF
    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively
    corecore