2,570 research outputs found

    Operating room first case start times: a metric to assess systems-based practice milestones?

    Get PDF
    BACKGROUND: Resident competence in peri-operative care is a reflection on education and cost-efficiency. Inspecting pre-existing operating room metrics for performance outliers may be a potential solution for assessing competence. Statistical correlation of problematic benchmarks may reveal future opportunities for educational intervention. METHODS: Case-log database review yielded 3071 surgical cases involving residents over the course of 5 years. Surgery anticipated and actual start times were evaluated for delays and residents were assessed using the days of resident training performed at the time of each corresponding case. Other variables recorded included day of week, attending anesthesiologist name, attending surgeon name, patient age, sex, American Society of Anesthesiologists physical status classification (ASA PS), and in-patient versus day surgery status. Mixed-effect, multi-variable, linear regression determined independent determinants of delay time. RESULTS: The analysis identified day of the week (F = 25.65, P \u3c 0.0001), days of training (F = 8.39, P = 0.0038), attending surgeon (F = 2.67, P \u3c 0.0001), and anesthesiology resident (F = 1.67, P = 0.0012) as independent predictors of delay time for first-start cases, with an overall regression model F = 3.09, r2 = 0.186, and P \u3c 0.0001. CONCLUSIONS: The day of the week and attending surgeon demonstrated significant impact of case delay compared to resident days trained. If a learning curve for first-case start punctuality exists for anesthesiology residents, it is subtle and irrelevant to operating room efficiency. The regression model accounted for only 19% of the variability in the outcome of delay time, indicating a multitude of additional unidentified factors contributing to operating room efficiency

    Premier

    Full text link

    Reducing the within-patient variability of breathing for radiotherapy delivery in conscious, unsedated cancer patients using a mechanical ventilator

    Get PDF
    OBJECTIVE: Variability in the breathing pattern of patients with cancer during radiotherapy requires mitigation, including enlargement of the planned treatment field, treatment gating and breathing guidance interventions. Here, we provide the first demonstration of how easy it is to mechanically ventilate patients with breast cancer while fully conscious and without sedation, and we quantify the resulting reduction in the variability of breathing. METHODS: 15 patients were trained for mechanical ventilation. Breathing was measured and the left breast anteroposterior displacement was measured using an Osiris surface-image mapping system (Qados Ltd, Sandhurst, UK). RESULTS: Mechanical ventilation significantly reduced the within-breath variability of breathing frequency by 85% (p < 0.0001) and that of inflation volume by 29% (p < 0.006) when compared with their spontaneous breathing pattern. During mechanical ventilation, the mean amplitude of the left breast marker displacement was 5 ± 1 mm, the mean variability in its peak inflation position was 0.5 ± 0.1 mm and that in its trough inflation position was 0.4 ± 0.0 mm. Their mean drifts were not significantly different from 0 mm min(−1) (peak drift was −0.1 ± 0.2 mm min(−1) and trough drift was −0.3 ± 0.2 mm min(−1)). Patients had a normal resting mean systolic blood pressure (131 ± 5 mmHg) and mean heart rate [75 ± 2 beats per minute (bpm)] before mechanical ventilation. During mechanical ventilation, the mean blood pressure did not change significantly, mean heart rate fell by 2 bpm (p < 0.05) with pre-oxygenation and rose by only 4 bpm (p < 0.05) during pre-oxygenation with hypocapnia. No patients reported discomfort and all 15 patients were always willing to return to the laboratory on multiple occasions to continue the study. CONCLUSION: This simple technique for regularizing breathing may have important applications in radiotherapy. ADVANCES IN KNOWLEDGE: Variations in the breathing pattern introduce major problems in imaging and radiotherapy planning and delivery and are currently addressed to only a limited extent by asking patients to breathe to auditory or visual guidelines. We provide the first demonstration that a completely different technique, of using a mechanical ventilator to take over the patients' breathing for them, is easy for patients who are conscious and unsedated and reduces the within-patient variability of breathing. This technique has potential advantages in radiotherapy over currently used breathing guidance interventions because it does not require any active participation from or feedback to the patient and is therefore worthy of further clinical evaluation

    Ceramic matrix composite turbine engine vane

    Get PDF
    A vane has an airfoil shell and a spar within the shell. The vane has an outboard shroud at an outboard end of the shell and an inboard platform at an inboard end of the shell. The spar has a first chamber essentially along the suction side and a second chamber along the pressure side opposite the first chamber

    Hidden Subluminous sd/wd among the FAUST UV sources toward OPHIUCHUS

    Full text link
    A UV image in the direction of Ophiuchus, obtained with the FAUST instrument is analysed. Suitable candidates as unrecognized subluminous stars are selected comparing the observed UV flux to the predicted one. The uv-excess objects were observed at the 1.0 m Wise telescope. This method yields to the detection of eight broad Balmer lines objects. Six are classified as sds and two wds, comparing the Hbeta line profile with that of stellar model atmospheres.Comment: 2 pages, including 2 figures. To appear in the Proceedings of the 13th European Workshop on White Dwarfs. NATO Science Series II, Kluwer Academic Publishe

    Safely prolonging single breath-holds to &gt;5 min in patients with cancer; feasibility and applications for radiotherapy

    Get PDF
    OBJECTIVE: Multiple, short and deep inspiratory breath-holds with air of approximately 20 s are now used in radiotherapy to reduce the influence of ventilatory motion and damage to healthy tissue. There may be further clinical advantages in delivering each treatment session in only one single, prolonged breath-hold. We have previously developed techniques enabling healthy subjects to breath-hold for 7 min. Here, we demonstrate their successful application in patients with cancer. METHODS: 15 patients aged 37–74 years undergoing radiotherapy for breast cancer were trained to breath-hold safely with pre-oxygenation and mechanically induced hypocapnia under simulated radiotherapy treatment conditions. RESULTS: The mean breath-hold duration was 5.3 ± 0.2 min. At breakpoint, all patients were normocapnic and normoxic [mean end-tidal partial pressure of carbon dioxide was 36 ± 1 standard error millimetre of mercury, (mmHg) and mean oxygen saturation was 100 ± 0 standard error %]. None were distressed, nor had gasping, dizziness or disturbed breathing in the post-breath-hold period. Mean blood pressure had risen significantly from 125 ± 3 to 166 ± 4 mmHg at breakpoint (without heart rate falling), but normalized within approximately 20 s of the breakpoint. During breath-holding, the mean linear anteroposterior displacement slope of the L breast marker was <2 mm min(−1). CONCLUSION: Patients with cancer can be trained to breath-hold safely and under simulated radiotherapy treatment conditions for longer than the typical beam-on time of a single fraction. We discuss the important applications of this technique for radiotherapy. ADVANCES IN KNOWLEDGE: We demonstrate for the first time a technique enabling patients with cancer to deliver safely a single prolonged breath-hold of >5 min (10 times longer than currently used in radiotherapy practice), under simulated radiotherapy treatment conditions

    Disrupted Peyer’s Patch Microanatomy in COVID-19 Including Germinal Centre Atrophy Independent of Local Virus

    Get PDF
    Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of ileal Peyer’s patches (PP) remains unknown. Here we analysed post-mortem tissues from throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction and lower nuclear density in COVID-19 patients. This occurred independent of the local viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune response is compromised in severe COVID-19, which could contribute to observed dysbiosis
    • …
    corecore