4,289 research outputs found

    Vertically emitting annular Bragg lasers using polymer epitaxial transfer

    Get PDF
    Fabrication of a planar semiconductor microcavity, composed of cylindrical Bragg reflectors surrounding a radial defect, is demonstrated. A versatile polymer bonding process is used to transfer active InGaAsP resonators to a low-index transfer substrate. Vertical emission of in-plane modes lasing at telecom wavelengths is observed under pulsed optical excitation with a submilliwatt threshold

    Assessment of lithographic process variation effects in InGaAsP annular Bragg resonator lasers

    Get PDF
    Optical microresonators based on an annular geometry of radial Bragg reflectors have been designed and fabricated by electron-beam lithography, reactive ion etching, and an epitaxial transfer process. Unlike conventional ring resonators that are based on total internal reflection of light, the annular structure described here is designed to support optical modes with very small azimuthal propagation coefficient and correspondingly large free spectral range. The effect of lithographic process variation upon device performance is studied. Laser emission wavelength and threshold optical pump power are found to vary between similar devices given different electron doses during electron-beam lithography. As the resonance wavelength and quality factor of these resonators are very sensitive to environmental changes, these resonators make ideal active light sources that can be integrated into large arrays for gas and liquid sensing applications and are easily interrogated

    Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening

    Get PDF
    Computational techniques such as structure-based virtual screening require carefully prepared 3D models of potential small-molecule ligands. Though powerful, existing commercial programs for virtual-library preparation have restrictive and/or expensive licenses. Freely available alternatives, though often effective, do not fully account for all possible ionization, tautomeric, and ring-conformational variants. We here present Gypsum-DL, a free, robust open-source program that addresses these challenges. As input, Gypsum-DL accepts virtual compound libraries in SMILES or flat SDF formats. For each molecule in the virtual library, it enumerates appropriate ionization, tautomeric, chiral, cis/trans isomeric, and ring-conformational forms. As output, Gypsum-DL produces an SDF file containing each molecular form, with 3D coordinates assigned. To demonstrate its utility, we processed 1558 molecules taken from the NCI Diversity Set VI and 56,608 molecules taken from a Distributed Drug Discovery (D3) combinatorial virtual library. We also used 4463 high-quality protein-ligand complexes from the PDBBind database to show that Gypsum-DL processing can improve virtual-screening pose prediction. Gypsum-DL is available free of charge under the terms of the Apache License, Version 2.0

    Annular Bragg resonators (ABR): the ideal tool for biochemical sensing, nonlinear optics, and cavity QED

    Get PDF
    Circular resonators are fundamentally interesting elements that are essential for research involving highly confined fields and strong photon-atom interactions such as cavity QED, as well as for practical applications in optical communication systems as and biochemical sensing. The important characteristics of a ring resonator are the Q-factor, the free spectral range (FSR) and the modal volume, where the last two are primarily determined by the resonator dimensions. The Total-Internal-Reflection (TIR) mechanism employed in "conventional" resonators couples between these characteristics and limits the ability to realize compact devices with large FSR, small modal volume and high Q. Recently, we proposed and analyzed a new class of a resonator in an annular geometry that is based on a single defect surrounded by radial Bragg reflectors on both sides. The radial Bragg confinement breaks the link between the characteristics of the mode and paves a new way for the realization of compact and low loss resonators. Such properties as well as the unique mode profile of the ABRs make this class of devices an excellent tool for ultra-sensitive biochemical detection as well as for studies in nonlinear optics and cavity QED

    Lasing from a circular Bragg nanocavity with an ultra-small modal volume

    Get PDF
    We demonstrate single-mode lasing at telecommunication wavelengths from a circular nanocavity employing a radial Bragg reflector. Ultra-small modal volume and Sub milliwatt pump threshold level are observed for lasers with InGaAsP quantum well active membrane. The electromagnetic field is shown to be tightly confined within the 300nm central pillar of the cavity. The quality factors of the resonator modal fields are estimated to be on the order of a few thousands.Comment: 3 pages, 4 figures Submitted to AP

    Low Threshold Two-Dimensional Annular Bragg Lasers

    Get PDF
    Lasing at telecommunication wavelengths from annular resonators employing radial Bragg reflectors is demonstrated at room temperature under pulsed optical pumping. Sub milliwatt pump threshold levels are observed for resonators with 0.5-1.5 wavelengths wide defects of radii 7-8 mm. The quality factors of the resonator modal fields are estimated to be on the order of a few thousands. The electromagnetic field is shown to be guided by the defect. Good agreement is found between the measured and calculated spectrum.Comment: 8 pages, 4 figure

    InGaAsP annular Bragg lasers: theory, applications and modal properties

    Get PDF
    A novel class of circular resonators, based on a radial defect surrounded by Bragg reflectors, is studied in detail. Simple rules for the design and analysis of such structures are derived using a transfer matrix formalism. Unlike conventional ring resonators, annular Bragg resonators (ABR) are not limited by the total internal reflection condition, and can exhibit both large free spectral ranges and low bend losses. The Bragg reflection mechanism enables the confinement of light within a defect consisting of a low refractive index medium (such as air). Strong atom-photon interaction can be achieved in such a structure, making it a promising candidate for sensing and cavity QED applications. For sensing applications, we show that the ABR structure can possess significantly higher sensitivity when compared to a conventional ring resonator sensor. Lasing action and low threshold levels are demonstrated in ABR lasers at telecommunication wavelengths under pulsed optical pumping at room temperatures. The impact of the intensity and dimensions of the pump-spot on the emitted spectrum is studied in detail.Comment: 7 pages 10 figure

    Enantio- and Diastereoselective 1,2-Additions to α-Ketoesters with Diborylmethane and Substituted 1,1-Diborylalkanes

    Get PDF
    The catalytic enantioselective synthesis of boronate-substituted tertiary alcohols through additions of diborylmethane and substituted 1,1-diborylalkanes to α-ketoesters is reported. The reactions are catalyzed by readily available chiral phosphine/copper(I) complexes and produce β-hydroxyboronates containing up to two contiguous stereogenic centers in up to 99:1 e.r. and greater than 20:1 d.r. The utility of the organoboron products is demonstrated through several chemoselective functionalizations. Evidence indicates the reactions occur via an enantioenriched α-boryl-copper-alkyl intermediate

    First Attempt at Spectroscopic Detection of Gravity Modes in a Long-Period Pulsating Subdwarf B Star -- PG 1627+017

    Full text link
    In the first spectroscopic campaign for a PG 1716 variable (or long-period pulsating subdwarf B star), we succeeded in detecting velocity variations due to g-mode pulsations at a level of 1.0-1.5 km/s.The observations were obtained during 40 nights on 2-m class telescopes in Arizona, South Africa,and Australia. The target,PG1627+017, is one of the brightest and largest amplitude stars in its class.It is also the visible component of a post-common envelope binary.Our final radial velocity data set includes 84 hours of time-series spectroscopy over a time baseline of 53 days. Our derived radial velocity amplitude spectrum, after subtracting the orbital motion, shows three potential pulsational modes 3-4 sigma above the mean noise level, at 7201.0s,7014.6s and 7037.3s.Only one of the features is statistically likely to be real,but all three are tantalizingly close to, or a one day alias of, the three strongest periodicities found in the concurrent photometric campaign. We further attempted to detect pulsational variations in the Balmer line amplitudes. The single detected periodicity of 7209 s, although weak, is consistent with theoretical expectations as a function of wavelength.Furthermore, it allows us to rule out a degree index of l= 3 or l= 5 for that mode. Given the extreme weakness of g-mode pulsations in these stars,we conclude that anything beyond simply detecting their presence will require larger telescopes,higher efficiency spectral monitoring over longer time baselines,improved longitude coverage, and increased radial velocity precision.Comment: 39 pages, 9 figures, 4 tables, ApJ accepted. See postscript for full abtrac

    Annular Bragg resonators (ABR): the ideal tool for biochemical sensing, nonlinear optics, and cavity QED

    Get PDF
    Circular resonators are fundamentally interesting elements that are essential for research involving highly confined fields and strong photon-atom interactions such as cavity QED, as well as for practical applications in optical communication systems as and biochemical sensing. The important characteristics of a ring resonator are the Q-factor, the free spectral range (FSR) and the modal volume, where the last two are primarily determined by the resonator dimensions. The Total-Internal-Reflection (TIR) mechanism employed in "conventional" resonators couples between these characteristics and limits the ability to realize compact devices with large FSR, small modal volume and high Q. Recently, we proposed and analyzed a new class of a resonator in an annular geometry that is based on a single defect surrounded by radial Bragg reflectors on both sides. The radial Bragg confinement breaks the link between the characteristics of the mode and paves a new way for the realization of compact and low loss resonators. Such properties as well as the unique mode profile of the ABRs make this class of devices an excellent tool for ultra-sensitive biochemical detection as well as for studies in nonlinear optics and cavity QED
    corecore