47,319 research outputs found

    FIP Bias Evolution in a Decaying Active Region

    Get PDF
    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode's EUV Imaging Spectrometer (EIS) instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR) 11389. The composition maps show how FIP bias evolves within the decaying AR from 2012 January 4-6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR's decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing time scales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR's high-flux density core. We conclude that in the decay phase of an AR's lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e. decreasing the AR's overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs (Widing &\& Feldman, 2001, ApJ, 555, 426)

    Plasma composition in a sigmoidal anemone active region

    Get PDF
    Using spectra obtained by the EIS instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359 arcsec x 485 arcsec. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the AR age, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configfiuration.Comment: For on-line animation, see http://www.mssl.ucl.ac.uk/~db2/fip_intensity.gif. Accepted by Ap

    Fading of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    Three observations of the 5.54 s Transient Anomalous X-ray Pulsar XTE J1810-197 obtained over 6 months with the Newton X-Ray Multi-Mirror Mission (XMM-Newton) are used to study its spectrum and pulsed light curve as the source fades from outburst. The decay is consistent with an exponential of time constant 300 days, but not a power law as predicted in some models of sudden deep crustal heating events. All spectra are well fitted by a blackbody plus a steep power law, a problematic model that is commonly fitted to anomalous X-ray pulsars (AXPs). A two-temperature blackbody fit is also acceptable, and better motivated physically in view of the faint optical/IR fluxes, the X-ray pulse shapes that weakly depend on energy in XTE J1810-197, and the inferred emitting areas that are less than or equal to the surface area of a neutron star. The fitted temperatures remained the same while the flux declined by 46%, which can be interpreted as a decrease in area of the emitting regions. The pulsar continues to spin down, albeit at a reduced rate of (5.1+/-1.6)x10^{-12} s s^{-1}. The inferred characteristic age Tau_c = P/2Pdot ~17,000 yr, magnetic field strength B_s ~1.7x10^{14} G, and outburst properties are consistent with both the outburst and quiescent X-ray luminosities being powered by magnetic field decay, i.e., XTE J1810-197 is a magnetar.Comment: 10 pages, 5 figures, accepted by Ap.

    Radio and near-infrared observations of the steep spectrum Galactic plane radio source WKB 0314+57.8

    Full text link
    Radio and near-infared observations towards the steep spectrum Galactic plane radio source WKB 0314+57.8 are presented, in order to clarify the nature of this source. The radio observations include archival and survey data, together with new Giant Metrewave Radio Telescope observations at 617 MHz. The near-infrared observations are in the J and K bands, from the Gemini instrument on the Shane 3-m telescope. The radio observations show that WKB 0314+57.8 is extended, with an very steep spectrum (with flux density proportional to frequency to -2.5 power between 40 MHz and 1.5 GHz). The colour--magnitude diagram constructed from near-infrared observations of the field suggests the presence of a z approx 0.08 galaxy cluster behind the Galactic plane, reddened by about 6 magnitudes of visual extinction. Although the steep spectrum source has no obvious identification, two other radio sources in the field covered by the near-infrared observations have tentative identifications with galaxies. These observations indicate that WKB 0314+57.8 is a relic source in a cluster of galaxies, not a pulsar.Comment: 6 pages, to appear in MNRAS, typos correcte

    Nonequilibrium mesoscopic transport: a genealogy

    Full text link
    Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems.Comment: 21p

    High-field noise in metallic diffusive conductors

    Full text link
    We analyze high-field current fluctuations in degenerate conductors by mapping the electronic Fermi-liquid correlations at equilibrium to their semiclassical non-equilibrium form. Our resulting Boltzmann description is applicable to diffusive mesoscopic wires. We derive a non-equilibrium connection between thermal fluctuations of the current and resistive dissipation. In the weak-field limit this is the canonical fluctuation- dissipation theorem. Away from equilibrium, the connection enables explicit calculation of the excess ``hot-electron'' contribution to the thermal spectrum. We show that excess thermal noise is strongly inhibited by Pauli exclusion. This behaviour is generic to the semiclassical metallic regime.Comment: 13 pp, one fig. Companion paper to cond-mat/9911251. Final version, to appear in J. Phys.: Cond. Ma

    Discovery of the Putative Pulsar and Wind Nebula Associated with the TeV Gamma-ray Source HESS J1813-178

    Full text link
    We present a Chandra X-ray observation of G12.82-0.02, a shell-like radio supernova remnant coincident with the TeV gamma-ray source HESS J1813-178. We resolve the X-ray emission from the co-located ASCA source into a point source surrounded by structured diffuse emission that fills the interior of the radio shell. The morphology of the diffuse emission strongly resembles that of a pulsar wind nebula. The spectrum of the compact source is well-characterized by a power-law with index Gamma approx 1.3, typical of young and energetic rotation-powered pulsars. For a distance of 4.5 kpc, consistent with the X-ray absorption and an association with the nearby star formation region W33, the 2-10 keV X-ray luminosities of the putative pulsar and nebula are L(PSR) = 3.2E33 ergs/s and L(PWN) = 1.4E34 ergs/s, respectively. Both the flux ratio of L(PWN)/L(PSR) = 4.3 and the total luminosity of this system predict a pulsar spin-down power of Edot > 1E37 ergs/s, placing it within the ten most energetic young pulsars in the Galaxy. A deep search for radio pulsations using the Parkes telescope sets an upper-limit of approx 0.07 mJy at 1.4 GHz for periods >~ 50 ms. We discuss the energetics of this source, and consider briefly the proximity of bright H2 regions to this and several other HESS sources, which may produce their TeV emission via inverse Compton scattering.Comment: 7 pages, 6 figure, Latex, emulateapj style. To appear in the Astrophysical Journa

    Grain growth in newly discovered young eruptive stars

    Full text link
    FU Orionis-type stars are young stellar objects showing large outbursts due to highly enhanced accretion from the circumstellar disk onto the protostar. FUor-type outbursts happen in a wide variety of sources from the very embedded ones to those with almost no sign of extended emission beyond the disk. The subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. We used VLT/VISIR to obtain the first spectra that cover the 8-13 Ό\mum mid-infrared wavelength range in low-resolution of five recently discovered FUors. Four objects from our sample show the 10 Ό\mum silicate feature in emission. We study the shape and strength of the silicate feature in these objects and find that they mostly contain large amorphous grains, suggesting that large grains are typically not settled to the midplane in FUor disks. This is a general characteristic of FUors, as opposed to regular T Tauri-type stars whose disks display anything from pristine small grains to significant grain growth. We classify our targets by determining whether the silicate feature is in emission or in absorption, and confront them with the evolutionary scenarios on the dispersal of the envelopes around young stars. In our sample, all Class II objects exhibit silicate emission, while for Class I objects, the appearance of the feature in emission or absorption depends on the viewing angle with respect to the outflow cavity. This highlights the importance of geometric effects when interpreting the silicate feature.Comment: 7 pages, 1 table, 3 figures, accepted for publication in the Astrophysical Journal Letter

    Teachers' classroom feedback: still trying to get it right

    Get PDF
    This article examines feedback traditionally given by teachers in schools. Such feedback tends to focus on children's acquisition and retrieval of externally prescribed knowledge which is then assessed against mandated tests. It suggests that, from a sociocultural learning perspective, feedback directed towards such objectives may limit children's social development. In this article, I draw on observation and interview data gathered from a group of 27 9- to 10-year olds in a UK primary school. These data illustrate the children's perceived need to conform to, rather than negotiate, the teacher's feedback comments. They highlight the children's sense that the teacher's feedback relates to school learning but not to their own interests. The article also includes alternative examples of feedback which draw on children's own inquiries and which relate to the social contexts within which, and for whom, they act. It concludes by suggesting that instead of looking for the right answer to the question of what makes teachers' feedback effective in our current classrooms, a more productive question might be how a negotiation can be opened up among teachers and learners themselves, about how teachers' feedback could support children's learning most appropriately
    • 

    corecore