38 research outputs found

    Open source cable models for EMI simulations

    Get PDF
    This paper describes the progress of work towards an Open Source software toolset suitable for developing Spice based multi-conductor cable models. The issues related to creating a transmission line model for implementation in Spice which include the frequency dependent properties of real cables are presented and the viability of spice cable models is demonstrated through application to a three conductor crosstalk model. Development of the techniques to include models of shielded cables and incident field excitation has been demonstrated

    Open source cable models for EMI simulations

    Get PDF
    This paper describes the progress of work towards an Open Source software toolset suitable for developing Spice based multi-conductor cable models. The issues related to creating a transmission line model for implementation in Spice which include the frequency dependent properties of real cables are presented and the viability of spice cable models is demonstrated through application to a three conductor crosstalk model. Development of the techniques to include models of shielded cables and incident field excitation has been demonstrated

    Statistical Characterization of Wireless MIMO Channels in Mode-Stirred Enclosures

    Get PDF
    We present the statistical characterization of a 2x2 Multiple-Input Multiple-Output wireless link operated in a mode-stirred enclosure, with channel state information available only at the receiver (agnostic transmitter). Our wireless channel measurements are conducted in absence of line of sight and varying the inter-element spacing between the two antenna elements in both the transmit and receive array. The mode-stirred cavity is operated: i) at a low number of stirrer positions to create statistical inhomogeneity; ii) at two different loading conditions, empty and with absorbers, in order to mimic a wide range of realistic equipment level enclosures. Our results show that two parallel channels are obtained within the confined space at both the operating conditions. The statistical characterization of the wireless channel is presented in terms of coherence bandwidth, path loss, delay spread and Rician factor, and wideband channel capacity. It is found that the severe multipath fading supported by a highly reflecting environment creates unbalance between the two Multiple-Input Multiple-Output channels, even in presence of substantial losses. Furthermore, the channel capacity has a multi-modal distribution whose average and variance scale monotonically with the number of absorbers. Results are of interest in IoT devices, including wireless chip-to-chip and device-to-device communications, operating in highly reflective environments

    2x2 MIMO Prototype for BER and EVM Measurements in Metal Enclosure

    Get PDF
    In this work, we present a 2x2 near-field multi-input multiple-output (MIMO) prototype for bit-error-rate (BER) and error vector magnitude (EVM) measurements in a metal enclosure. The near-field MIMO prototype is developed using software-defined-radios (SDRs) for over-the-air transmission of QPSK modulated baseband waveforms. We check the near-field MIMO BER and EVM measurements in three different scenarios in a highly reflecting metal enclosure environment. In the first scenario, the line-of-sight (LOS) communication link is investigated when the mode-stirrer is stationary. In stationary channel conditions near-field MIMO BER and EVM measurements are performed. In the second scenario, BER and EVM measurements are performed in dynamic channel conditions when the mode-stirrer is set to move continuously. In the third scenario, LOS communication near-field MIMO BER and EVM measurements are performed in stationary channel conditions but now in the presence of MIMO interference. In three different scenarios, near-field MIMO BER and EVM measurements are investigated at different Tx USRP gain values and in the presence of varying levels of MIMO interference.Comment: 10 page

    Electromagnetic shielding effectiveness of fiber-reinforced composites: a preliminary study

    Get PDF
    The use of Low power Radio Frequency (RF) based techniques as Non Destructive Testing (NDT) methods offers a potential solution for detecting defects and anomalies occurring in the structural integrity of composite based structures in real time, enabling better scheduling of servicing, repair and maintenance and eventual decommissioning of aircraft structures. Therefore preliminary results regarding the measurements of electromagnetic shielding effectiveness (SE) of diverse conductive fiber-reinforced composites will be reported. This investigation has been carried out with a coaxial transmission line testing chamber according to ASTM 4935 in the Radio spectrum, by means of comparisons between electromagnetic waves propagation in composites and traditional conductive materials, and through changes in electromagnetic shielding performances, based on the structural characteristics of the composite material

    Open source cable models for EMI simulations

    Get PDF
    This paper describes the progress of work towards an Open Source software toolset suitable for developing Spice based multi-conductor cable models. The issues related to creating a transmission line model for implementation in Spice which include the frequency dependent properties of real cables are presented and the viability of spice cable models is demonstrated through application to a three conductor crosstalk model. Development of the techniques to include models of shielded cables and incident field excitation has been demonstrated

    Multi-path fading and interference mitigation with Reconfigurable Intelligent Surfaces

    Get PDF
    We exploit multi-path fading propagation to improve both the signal-to-interference-plus-noise-ratio and the stability of wireless communications within electromagnetic environments that support rich multipath propagation. Quasi-passive propagation control with multiple binary reconfigurable intelligent surfaces is adopted to control the stationary waves supported by a metallic cavity hosting a software-defined radio link. Results are demonstrated in terms of the error vector magnitude minimization of a quadrature phase-shift modulation scheme under no-line-of-sight conditions. It is found that the magnitude of fluctuation of received symbols is reduced to a stable constellation by increasing the number of individual surfaces, or elements, thus demonstrating channel hardening. By using a second software-defined radio device as a jammer, we demonstrate the ability of the RIS to mitigate the co-channel interference by channel hardening. Results are of particular interest in smart radio environments for mobile network architectures beyond 5G

    Reconfigurable Intelligent Surface-assisted Classification of Modulations using Deep Learning

    Full text link
    The fifth generating (5G) of wireless networks will be more adaptive and heterogeneous. Reconfigurable intelligent surface technology enables the 5G to work on multistrand waveforms. However, in such a dynamic network, the identification of specific modulation types is of paramount importance. We present a RIS-assisted digital classification method based on artificial intelligence. We train a convolutional neural network to classify digital modulations. The proposed method operates and learns features directly on the received signal without feature extraction. The features learned by the convolutional neural network are presented and analyzed. Furthermore, the robust features of the received signals at a specific SNR range are studied. The accuracy of the proposed classification method is found to be remarkable, particularly for low levels of SNR

    Experimental Evaluation of Multi-operator RIS-assisted Links in Indoor Environment

    Get PDF
    In this work, we present reconfigurable intelligent surface (RIS)-assisted optimization of the multiple links in the same indoor environment. Multiple RISs from different operators can co-exists and handle independent robust communication links in the same indoor environment. We investigated the key performance metrics with the help of two simultaneously operating RIS-empowered robust communication links at different center frequencies in the same indoor environment. We found with the help of bit error rate (BER) and error vector magnitude (EVM) measurements that two operators can co-exist in the same RF environment without seriously impacting quality of service of users
    corecore