9 research outputs found

    Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells

    Get PDF
    MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7 inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and activation, downregulation of hnRNP U enhances MALT1A expression and T-cell activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding to enhance downstream signalling and to promote optimal T-cell activation

    The Janus Face of Follicular T Helper Cells in Chronic Viral Infections

    No full text
    Chronic infections with non-cytopathic viruses constitutively expose virus-specific adaptive immune cells to cognate antigen, requiring their numeric and functional adaptation. Virus-specific CD8 T cells are compromised by various means in their effector functions, collectively termed T cell exhaustion. Alike CD8 T cells, virus-specific CD4 Th1 cell responses are gradually downregulated but instead, follicular T helper (TFH) cell differentiation and maintenance is strongly promoted during chronic infection. Thereby, the immune system promotes antibody responses, which bear less immune-pathological risk compared to cytotoxic and pro-inflammatory T cell responses. This emphasis on TFH cells contributes to tolerance of the chronic infection and is pivotal for the continued maturation and adaptation of the antibody response, leading eventually to the emergence of virus-neutralizing antibodies, which possess the potential to control the established chronic infection. However, sustained high levels of TFH cells can also result in a less stringent B cell selection process in active germinal center reactions, leading to the activation of virus-unspecific B cells, including self-reactive B cells, and to hypergammaglobulinemia. This dispersal of B cell help comes at the expense of a stringently selected virus-specific antibody response, thereby contributing to its delayed maturation. Here, we discuss these opposing facets of TFH cells in chronic viral infections

    Landornamides: Antiviral Ornithine-Containing Ribosomal Peptides Discovered through Genome Mining

    No full text
    International audienceProteusins are a family of bacterial ribosomal peptides that largely remain hypothetical genome-predicted metabolites. The only known members are the polytheona-mide-type cytotoxins, which have complex structures due to numerous unusual posttranslational modifications (PTMs). Cyanobacteria contain large numbers of putative proteusin loci. To investigate their chemical and pharmacological potential beyond polytheonamide-type compounds, we characterized landornamide A, the product of the silent osp gene cluster from Kamptonema sp. PCC 6506. Pathway reconstruction in E. coli revealed a peptide combining lanthionines, d-residues, and, unusually, two ornithines introduced by the arginase-like enzyme OspR. Landornamide A inhibited lym-phocytic choriomeningitis virus infection in mouse cells, thus making it one of the few known anti-arenaviral compounds. These data support proteusins as a rich resource of chemical scaffolds, new maturation enzymes, and bioactivities

    LCMV-specific CD4 T cell dependent polyclonal B-cell activation upon persistent viral infection is short lived and extrafollicular

    No full text
    Persistent virus infections with non‐ or poorly cytopathic viruses are commonly associated with B cell dysregulations. These include the induction of hypergammaglobulinemia and the emergence of virus‐unspecific antibodies. These seemingly unspecific antibody responses interfere with the virus‐specific humoral immunity and contribute to delayed virus control. Whether these virus‐unspecific antibodies are induced in the B cell follicle or at extrafollicular sites and whether one specific CD4 T cell subset is involved in the polyclonal B cell activation is unclear. Here we studied virus‐unrelated IgG antibody responses against self or foreign antigens in the context of persistent lymphocytic choriomeningitis virus (LCMV) infection. We found that the LCMV‐unspecific antibody response is short‐lived and induced predominantly at extrafollicular sites and depends on the presence of LCMV‐specific CD4 T cells. Our data support a scenario in which activated, virus‐specific CD4 T cells provide help to non‐specific B cells at extrafollicular sites, supporting the production of virus unspecific IgG antibodies during persistent viral infection.ISSN:0014-2980ISSN:1521-414

    Quantitative and Qualitative Analysis of Humoral Immunity Reveals Continued and Personalized Evolution in Chronic Viral Infection

    No full text
    Control of established chronic lymphocytic choriomeningitis virus (LCMV) infection requires the production of neutralizing antibodies, but it remains unknown how the ensemble of antibodies evolves during ongoing infection. Here, we analyze the evolution of antibody responses during acute or chronic LCMV infection, combining quantitative functional assays and time-resolved antibody repertoire sequencing. We establish that antibody responses initially converge in both infection types on a functional and repertoire level, but diverge later during chronic infection, showing increased clonal diversity, the appearance of mouse-specific persistent clones, and distinct phylogenetic signatures. Chronic infection is characterized by a longer-lasting germinal center reaction and a continuous differentiation of plasma cells, resulting in the emergence of higher-affinity plasma cells exhibiting increased antibody secretion rates. Taken together, our findings reveal the emergence of a personalized antibody response in chronic infection and support the concept that maintaining B cell diversity throughout chronic LCMV infection correlates with the development of infection-resolving antibodies.ISSN:2666-3864ISSN:2211-124

    Genome-based discovery and total synthesis of janustatins, potent cytotoxins from a plant-associated bacterium

    No full text
    Host-associated bacteria are increasingly being recognized as underexplored sources of bioactive natural products with unprecedented chemical scaffolds. A recently identified example is the plant-root-associated marine bacterium Gynuella sunshinyii of the chemically underexplored order Oceanospirillales. Its genome contains at least 22 biosynthetic gene clusters, suggesting a rich and mostly uncharacterized specialized metabolism. Here, in silico chemical prediction of a non-canonical polyketide synthase cluster has led to the discovery of janustatins, structurally unprecedented polyketide alkaloids with potent cytotoxicity that are produced in minute quantities. A combination of MS and two-dimensional NMR experiments, density functional theory calculations of C-13 chemical shifts and semiquantitative interpretation of transverse rotating-frame Overhauser effect spectroscopy data were conducted to determine the relative configuration, which enabled the total synthesis of both enantiomers and assignment of the absolute configuration. Janustatins feature a previously unknown pyridodihydropyranone heterocycle and an unusual biological activity consisting of delayed, synchronized cell death at subnanomolar concentrations.ISSN:1755-4349ISSN:1755-433
    corecore