61 research outputs found

    Infrared scintillation yield in gaseous and liquid argon

    Full text link
    The study of primary and secondary scintillations in noble gases and liquids is of paramount importance to rare-event experiments using noble gas media. In the present work, the scintillation yield in gaseous and liquid Ar has for the first time been measured in the near infrared (NIR) and visible region, both for primary and secondary (proportional) scintillations, using Geiger-mode avalanche photodiodes (G-APDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast component was measured to be 17000 photon/MeV in gaseous Ar in the NIR, in the range of 690-1000 nm, and 510 photon/MeV in liquid Ar, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar have been also observed; their amplification parameter at 163 K was measured to be 13 photons per drifting electron per kV. Possible applications of NIR scintillations in high energy physics experiments are discussed.Comment: 6 pages, 5 figures. Submitted to Europhysics Letter. Revised Figs. 3 and

    First demonstration of THGEM/GAPD-matrix optical readout in two-phase Cryogenic Avalanche Detector in Ar

    Full text link
    The multi-channel optical readout of a THGEM multiplier coupled to a matrix of 3x3 Geiger-mode APDs (GAPDs) was demonstrated in a two-phase Cryogenic Avalanche Detector (CRAD) in Ar. The GAPDs recorded THGEM-hole avalanches in the Near Infrared (NIR). At an avalanche charge gain of 160, the yield of the combined THGEM/GAPD-matrix multiplier amounted at ~80 photoelectrons per 20 keV X-ray absorbed in the liquid phase. A spatial resolution of 2.5 mm (FWHM) has been measured for the impinging X-rays. This technique has potential applications in coherent neutrino-nucleus scattering and dark matter search experiments.Comment: 4 pages, 6 figures. Presented at Vienna Conference of Instrumentation (Feb 15-20, 2013, Vienna, Austria). Submitted to the Proceeding

    Recent results on the properties of two-phase argon avalanche detectors

    Full text link
    The characteristic properties of two-phase Ar avalanche detectors, including those obtained with CsI photocathode, are further studied. Such detectors are relevant in the field of coherent neutrino-nucleus scattering and dark matter search experiments. The detectors investigated comprised a 1 cm thick liquid Ar layer followed by a triple-GEM multiplier. In these detectors, typical gains reaching 10000 were obtained with good reproducibility and a stable operation for at least one day was demonstrated. Amplitude and pulse-shape characteristics are presented under irradiation with X-rays, gamma-rays and neutrons from different radioactive sources. The detection of both primary scintillation and ionization signals at higher gains, at a deposited energy of 60 keV, has been demonstrated.Comment: 6 pages, 11 figures. Presented at Xth Int. Conf. for Collid. Beam Phys., Feb 28 - March 6, 2008, Novosibirsk, to be published in Nucl. Instr. Meth.

    On the low-temperature performances of THGEM and THGEM/G-APD multipliers in gaseous and two-phase Xe

    Full text link
    The performances of THGEM multipliers in two-phase Xe avalanche mode are presented for the first time. Additional results on THGEM operation in gaseous Xe at cryogenic temperatures are provided. Stable operation of a double-THGEM multiplier was demonstrated in two-phase Xe with gains reaching 600. These are compared to existing data, summarized here for two-phase Ar, Kr and Xe avalanche detectors incorporating GEM and THGEM multipliers. The optical readout of THGEMs with Geiger-mode Avalanche Photodiodes (G-APDs) has been investigated in gaseous Xe at cryogenic temperature; avalanche scintillations were recorded in the Near Infrared (NIR) at wavelengths of up to 950 nm. At avalanche charge gain of 350, the double-THGEM/G-APD multiplier yielded 0.07 photoelectrons per initial ionization electron, corresponding to an avalanche scintillation yield of 0.7 NIR photons per avalanche electron over 4pi. The results are compared with those of two-phase Ar avalanche detectors. The advantages, limitations and possible applications are discussed.Comment: 22 pages, 14 figures. Revised Figs. 10,11 and Table 1. To be published in JINS

    Geiger Mode APD performance in a cryogenic two-phase Ar avalanche detector based on THGEMs

    Full text link
    Characteristic properties of a Geiger Mode APD (G-APD) in a THGEM-based cryogenic two-phase Ar avalanche detector were studied in view of potential applications in rare-event experiments. G-APD signal amplitude and noise characteristics at cryogenic temperatures turned out to be superior to those at room temperature. The effective detection of avalanche scintillations from THGEM-multiplier holes in two-phase Ar has been demonstrated using a G-APD without wavelength shifter. At an avalanche gain of 60, the avalanche scintillation yield measured by the G-APD was as high as 0.9 photoelectrons per avalanche electron, extrapolated to 4pi acceptance.Comment: 4 pages, 8 figures. Presented at Vienna Conference on Instrumentation (Feb 15-20, 2010, Vienna, Austria). Submitted to the Proceeding

    Study of infrared scintillations in gaseous and liquid argon - Part I: methodology and time measurements

    Full text link
    A methodology to measure Near Infrared (NIR) scintillations in gaseous and liquid Ar, using Geiger-mode APDs (GAPDs) sensitive in the NIR and pulsed X-ray irradiation, is described. This study has been triggered by the development of Cryogenic Avalanche Detectors (CRADs) with optical readout in the NIR using combined THGEM/GAPD multiplier, which may come to be in demand in coherent neutrino-nucleus scattering and dark matter search experiments. A new approach to measure the NIR scintillation yield at cryogenic temperatures has been developed, namely using GAPDs in single photoelectron counting mode with time resolution. The time structure of NIR scintillations and their light yield were measured both for primary scintillations and that of secondary at moderate electric fields (electroluminescence), in gaseous and liquid Ar.Comment: 17 pages, 15 figures. Submitted to JINS

    Direct observation of avalanche scintillations in a THGEM-based two-phase Ar avalanche detector using Geiger-mode APD

    Full text link
    A novel concept of optical signal recording in two-phase avalanche detectors, with Geiger-mode Avalanche Photodiodes (G-APD) is described. Avalanche-scintillation photons were measured in a thick Gas Electron Multiplier (THGEM) in view of potential applications in rare-event experiments. The effective detection of avalanche scintillations in THGEM holes has been demonstrated in two-phase Ar with a bare G-APD without wavelength shifter, i.e. insensitive to VUV emission of Ar. At gas-avalanche gain of 400 and under \pm 70^\circ viewing-angle, the G-APD yielded 640 photoelectrons (pe) per 60 keV X-ray converted in liquid Ar; this corresponds to 0.7 pe per initial (prior to multiplication) electron. The avalanche-scintillation light yield measured by the G-APD was about 0.7 pe per avalanche electron, extrapolated to 4pi acceptance. The avalanche scintillations observed occurred presumably in the near infrared (NIR) where G-APDs may have high sensitivity. The measured scintillation yield is similar to that observed by others in the VUV. Other related topics discussed in this work are the G-APD's single-pixel and quenching resistor characteristics at cryogenic temperatures.Comment: 21 pages, 18 figures. Submitted to JINS
    corecore