36 research outputs found

    A palaeoenvironmental reconstruction of the Middle Jurassic of Sardinia (Italy) based on integrated palaeobotanical, palynological and lithofacies data assessment

    Get PDF
    During the Jurassic, Sardinia was close to continental Europe. Emerged lands started from a single island forming in time a progressively sinking archipelago. This complex palaeogeographic situation gave origin to a diverse landscape with a variety of habitats. Collection- and literature-based palaeobotanical, palynological and lithofacies studies were carried out on the Genna Selole Formation for palaeoenvironmental interpretations. They evidence a generally warm and humid climate, affected occasionally by drier periods. Several distinct ecosystems can be discerned in this climate, including alluvial fans with braided streams (Laconi-Gadoni lithofacies), paralic swamps and coasts (Nurri-Escalaplano lithofacies), and lagoons and shallow marine environments (Ussassai-Perdasdefogu lithofacies). The non-marine environments were covered by extensive lowland and a reduced coastal and tidally influenced environment. Both the river and the upland/hinterland environments are of limited impact for the reconstruction. The difference between the composition of the palynological and palaeobotanical associations evidence the discrepancies obtained using only one of those proxies. The macroremains reflect the local palaeoenvironments better, although subjected to a transport bias (e.g. missing upland elements and delicate organs), whereas the palynomorphs permit to reconstruct the regional palaeoclimate. Considering that the flora of Sardinia is the southernmost of all Middle Jurassic European floras, this multidisciplinary study increases our understanding of the terrestrial environments during that period of time

    Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa

    No full text
    The origin of trees by the mid-Devonian epoch (398–385 million years ago) signals a major change in terrestrial ecosystems with potential long-term consequences including increased weathering, drop in atmospheric CO2, modified climate, changes in sedimentation patterns and mass extinction1, 2, 3. However, little is known about the ecology of early forests or how changes in early terrestrial ecosystems influenced global processes. One of the most famous palaeontological records for this time is the ‘oldest fossil forest’ at Riverside Quarry, Gilboa, New York, USA, discovered in the 1920s4, 5. Hundreds of large Eospermatopteris sandstone casts, now thought to represent the bases of standing cladoxylopsid trees6, were recovered from a horizon that was originally interpreted as a muddy swamp. After quarry operations ceased, relatively minor outcrops of similar fossils at nearby localities have provided limited opportunities to evaluate this pervasive view using modern methods7, 8. In 2010, removal of the quarry backfill enabled reappraisal of the palaeoecology of this important site. Here we describe a 1,200 m2 map showing numerous Eospermatopteris root systems in life position within a mixed-age stand of trees. Unexpectedly, large woody rhizomes with adventitious roots and aerial branch systems identified as aneurophytalean progymnosperms run between, and probably climb into, Eospermatopteris trees. We describe the overall habit for these surprisingly large aneurophytaleans, the earliest fossil group having wood produced by a bifacial vascular cambium. The site also provides evidence for arborescence within lycopsids, extending the North American range for trees in this ecologically critical group. The rooting horizon is a dark grey sandy mudstone showing limited root penetration. Although clearly belonging to a wetland coastal plain environment9, the forest was probably limited in duration and subject to periodic disturbance. These observations provide fundamental clarification of the palaeoecology of this mixed-group early forest, with important implications for interpreting coeval assemblage data worldwide
    corecore