2,143 research outputs found

    Matrix controlled channel diffusion of sodium in amorphous silica

    Full text link
    To find the origin of the diffusion channels observed in sodium-silicate glasses, we have performed classical molecular dynamics simulations of Na2_2O--4SiO2_2 during which the mass of the Si and O atoms has been multiplied by a tuning coefficient. We observe that the channels disappear and that the diffusive motion of the sodium atoms vanishes if this coefficient is larger than a threshold value. Above this threshold the vibrational states of the matrix are not compatible with those of the sodium ions. We interpret hence the decrease of the diffusion by the absence of resonance conditions.Comment: 5 pages, 4 figure

    Coplanar Circumbinary Debris Disks

    Full text link
    We present resolved Herschel images of circumbinary debris disks in the alpha CrB (HD139006) and beta Tri (HD13161) systems. We find that both disks are consistent with being aligned with the binary orbital planes. Though secular perturbations from the binary can align the disk, in both cases the alignment time at the distances at which the disk is resolved is greater than the stellar age, so we conclude that the coplanarity was primordial. Neither disk can be modelled as a narrow ring, requiring extended radial distributions. To satisfy both the Herschel and mid-IR images of the alpha CrB disk, we construct a model that extends from 1-300AU, whose radial profile is broadly consistent with a picture where planetesimal collisions are excited by secular perturbations from the binary. However, this model is also consistent with stirring by other mechanisms, such as the formation of Pluto-sized objects. The beta Tri disk model extends from 50-400AU. A model with depleted (rather than empty) inner regions also reproduces the observations and is consistent with binary and other stirring mechanisms. As part of the modelling process, we find that the Herschel PACS beam varies by as much as 10% at 70um and a few % at 100um. The 70um variation can therefore hinder image interpretation, particularly for poorly resolved objects. The number of systems in which circumbinary debris disk orientations have been compared with the binary plane is now four. More systems are needed, but a picture in which disks around very close binaries (alpha CrB, beta Tri, and HD 98800, with periods of a few weeks to a year) are aligned, and disks around wider binaries (99 Her, with a 50 yr period) are misaligned, may be emerging. This picture is qualitatively consistent with the expectation that the protoplanetary disks from which the debris emerged are more likely to be aligned if their binaries have shorter periods.Comment: accepted to MNRA

    Atomic environments in iron meteorites using EXAFS

    Get PDF
    Extended x ray absorption fine structure (EXAFS) is observed as a modulation on the high energy side of an x ray absorption edge. It occurs when the photo-ejected electron wave is scattered by neighboring atoms in a solid, and interference occurs between the outgoing and scattered waves. The result is that the absorption spectrum carries a signature that is characteristic of the identity and disposition of scattering atoms around the absorbing atom. Therefore, it may be shown that the Fourier transform of the normalized EXAFS can provide detailed information about the immediate environment of specific atoms in a solid and is ideally suited to the study of cosmic dusts. A study of cosmic dust was initiated using EXAFS and other techniques. The simplest type of cosmic material, namely iron meteorites, was investigated

    A decreased probability of habitable planet formation around low-mass stars

    Get PDF
    Smaller terrestrial planets (< 0.3 Earth masses) are less likely to retain the substantial atmospheres and ongoing tectonic activity probably required to support life. A key element in determining if sufficiently massive "sustainably habitable" planets can form is the availability of solid planet-forming material. We use dynamical simulations of terrestrial planet formation from planetary embryos and simple scaling arguments to explore the implications of correlations between terrestrial planet mass, disk mass, and the mass of the parent star. We assume that the protoplanetary disk mass scales with stellar mass as Mdisk ~ f Mstar^h, where f measures the relative disk mass, and 1/2 < h < 2, so that disk mass decreases with decreasing stellar mass. We consider systems without Jovian planets, based on current models and observations for M stars. We assume the mass of a planet formed in some annulus of a disk with given parameters is proportional to the disk mass in that annulus, and show with a suite of simulations of late-stage accretion that the adopted prescription is surprisingly accurate. Our results suggest that the fraction of systems with sufficient disk mass to form > 0.3 Earth mass habitable planets decreases for low-mass stars for every realistic combination of parameters. This "habitable fraction" is small for stellar masses below a mass in the interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval that excludes most M stars. Radial mixing and therefore water delivery are inefficient in lower-mass disks commonly found around low-mass stars, such that terrestrial planets in the habitable zones of most low-mass stars are likely to be small and dry.Comment: Accepted to ApJ. 11 pages, 6 figure

    Internal Friction and Vulnerability of Mixed Alkali Glasses

    Full text link
    Based on a hopping model we show how the mixed alkali effect in glasses can be understood if only a small fraction c_V ofthe available sites for the mobile ions is vacant. In particular, we reproduce the peculiar behavior of the internal friction and the steep fall (''vulnerability'') of the mobility of the majority ion upon small replacements by the minority ion. The single and mixed alkali internal friction peaks are caused by ion-vacancy and ion-ion exchange processes. If c_V is small, they can become comparable in height even at small mixing ratios. The large vulnerability is explained by a trapping of vacancies induced by the minority ions. Reasonable choices of model parameters yield typical behaviors found in experiments.Comment: 4 pages, 4 figure

    Molecular hydrogen jets and outflows in the Serpens south filamentary cloud

    Full text link
    We aimed to map the jets and outflows from the Serpens South star forming region and find an empirical relationship between the magnetic field and outflow orientation. Near-infrared H2 v=1-0 S(1) 2.122{\mu}m -line imaging of the \sim 30'-long filamentary shaped Serpens South star forming region was carried out. K s broadband imaging of the same region was used for continuum subraction. Candidate driving sources of the mapped jets/outflows are identified from the list of known protostars and young stars in this region, which was derived from studies using recent Spitzer and Herschel telescope observations. 14 Molecular Hydrogen emission-line objects(MHOs) are identified using our continuum-subtracted images. They are found to constitute ten individual flows. Out of these, nine flows are located in the lower-half(southern) part of the Serpens South filament, and one flow is located at the northern tip of the filament. Four flows are driven by well-identified Class 0 protostars, while the remaining six flows are driven by candidate protostars mostly in the Class I stage, based on the Spitzer and Herschel observations. The orientation of the outflows is systematically perpendicular to the direction of the near-infrared polarization vector, recently published in the literature. No significant correlation was observed between the orientation of the flows and the axis of the filamentary cloud.Comment: Accepted by A&A for publication. 7 pages, 5 figure

    A deep submillimetre survey of the Galactic Centre

    Get PDF
    We present first results from a submillimetre continuum survey of the Galactic Centre `Central Molecular Zone' (CMZ), made with SCUBA on the James Clerk Maxwell Telescope. SCUBA's scan-map mode has allowed us to make extremely wide-field maps of thermal dust emission with unprecedented speed and sensitivity. We also discuss some issues related to the elimination of artefacts in scan-map data. Our simultaneous 850/450 micron maps have a total size of approximately 2.8 x 0.5 degrees (400 x 75 pc) elongated along the galactic plane. They cover the Sgr A region-including Sgr A*, the circumnuclear disc, and the +20 km/s and +50 km/s clouds; the area around the Pistol; Sgr B2-the brightest feature on the map; and at their Galactic Western and Eastern edges the Sgr C and Sgr D regions. There are many striking features such as filaments and shell-like structures, as well as point sources such as Sgr A* itself. The total mass in the Central Molecular Zone is greater than that revealed in previous optically-thin molecular line maps by a factor of ~3, and new details are revealed on scales down to 0.33 pc across this 400 pc wide region.Comment: 12 pages, 3 figures, (figures now smaller, in paper body), accepted by ApJ

    New Debris Disks Around Nearby Main Sequence Stars: Impact on The Direct Detection of Planets

    Get PDF
    Using the MIPS instrument on the Spitzer telescope, we have searched for infrared excesses around a sample of 82 stars, mostly F, G, and K main-sequence field stars, along with a small number of nearby M stars. These stars were selected for their suitability for future observations by a variety of planet-finding techniques. These observations provide information on the asteroidal and cometary material orbiting these stars - data that can be correlated with any planets that may eventually be found. We have found significant excess 70um emission toward 12 stars. Combined with an earlier study, we find an overall 70um excess detection rate of 13±313 \pm 3% for mature cool stars. Unlike the trend for planets to be found preferentially toward stars with high metallicity, the incidence of debris disks is uncorrelated with metallicity. By newly identifying 4 of these stars as having weak 24um excesses (fluxes \sim10% above the stellar photosphere), we confirm a trend found in earlier studies wherein a weak 24um excess is associated with a strong 70um excess. Interestingly, we find no evidence for debris disks around 23 stars cooler than K1, a result that is bolstered by a lack of excess around any of the 38 K1-M6 stars in 2 companion surveys. One motivation for this study is the fact that strong zodiacal emission can make it hard or impossible to detect planets directly with future observatories like the {\it Terrestrial Planet Finder (TPF)}. The observations reported here exclude a few stars with very high levels of emission, >>1,000 times the emission of our zodiacal cloud, from direct planet searches. For the remainder of the sample, we set relatively high limits on dust emission from asteroid belt counterparts

    Comment on "Liquid-Liquid Phase Transition in Supercooled Yttria-Alumina"

    Get PDF
    A Comment on the Letter by Adrian C. Barnes et al., Phys. Rev. Lett. 103 225702 (2009). The authors of the Letter offer a Reply
    corecore