30 research outputs found
Apigenin-7-o-glucoside versus apigenin: insight into the modes of anticandidal and cytotoxic actions
Bioactive potential of apigenin derivative apigenin-7-O-glucoside related to its antifungal activity on Candida spp. and cytotoxic effect on colon cancer cells was studied and compared with bioactive potential of apigenin. Antifungal activity was tested on 14 different isolates of Candida spp. using membrane permeability assay, measuring inhibition of reactive oxidative species and inhibition of CYP51 C. albicans enzyme. Cytotoxic potential of apigenin- 7-O-glucoside was tested on colon cancer HCT116 cells by measuring cell viability, apoptosis rate and apoptosis- and colon cancer-related gene expression. Obtained results indicated considerable antifungal activity of apigenin-7-O-glucoside towards all Candida isolates. Breakdown of C. albicans plasma membrane was achieved upon treatment with apigenin-7-O-glucoside for shorter period of time then with apigenin. Reduction of intra-and extracellular reactive oxidative species was achieved with minimum inhibitory concentrations of both compounds, suggesting that reactive oxidative species inhibition could be a mechanism of antifungal action. None of the compounds exhibited binding affinity to C. albicans CYP51 protein. Besides, apigenin-7-O-glucoside was more effective compared to apigenin in reduction of cell's viability and induction of cell death of HCT116 cells. Treatment with both compounds resulted in chromatin condensation, apoptotic bodies formation and apoptotic genes expression in HCT116 cells, but the apigenin-7-O-glucoside required a lower concentration to achieve the same effect. Compounds apigenin-7-O-glucoside and apigenin displayed prominent antifungal potential and cytotoxic effect on HCT116 cells. However, our results showed that apigenin-7-O-glucoside has more potent activity compared to apigenin in all assays that we used
Second-generation sulfonamide inhibitors of D-glutamic acid-adding enzyme: activity optimisation with conformationally rigid analogues of D-glutamic acid.
peer reviewedD-Glutamic acid-adding enzyme (MurD) catalyses the essential addition of d-glutamic acid to the cytoplasmic peptidoglycan precursor UDP-N-acetylmuramoyl-l-alanine, and as such it represents an important antibacterial drug-discovery target enzyme. Based on a series of naphthalene-N-sulfonyl-d-Glu derivatives synthesised recently, we synthesised two series of new, optimised sulfonamide inhibitors of MurD that incorporate rigidified mimetics of d-Glu. The compounds that contained either constrained d-Glu or related rigid d-Glu mimetics showed significantly better inhibitory activities than the parent compounds, thereby confirming the advantage of molecular rigidisation in the design of MurD inhibitors. The binding modes of the best inhibitors were examined with high-resolution NMR spectroscopy and X-ray crystallography. We have solved a new crystal structure of the complex of MurD with an inhibitor bearing a 4-aminocyclohexane-1,3-dicarboxyl moiety. These data provide an additional step towards the development of sulfonamide inhibitors with potential antibacterial activities
Apigenin-7-O-glucoside versus apigenin
Bioactive potential of apigenin derivative apigenin-7-O-glucoside related to its antifungal activity on Candida spp. and cytotoxic effect on colon cancer cells was studied and compared with bioactive potential of apigenin. Antifungal activity was tested on 14 different isolates of Candida spp. using membrane permeability assay, measuring inhibition of reactive oxidative species and inhibition of CYP51 C. albicans enzyme. Cytotoxic potential of apigenin-7-O-glucoside was tested on colon cancer HCT116 cells by measuring cell viability, apoptosis rate and apoptosis- and colon cancer-related gene expression. Obtained results indicated considerable antifungal activity of apigenin-7-O-glucoside towards all Candida isolates. Breakdown of C. albicans plasma membrane was achieved upon treatment with apigenin-7-O-glucoside for shorter period of time then with apigenin. Reduction of intra- and extracellular reactive oxidative species was achieved with minimum inhibitory concentrations of both compounds, suggesting that reactive oxidative species inhibition could be a mechanism of antifungal action. None of the compounds exhibited binding affinity to C. albicans CYP51 protein. Besides, apigenin-7-O-glucoside was more effective compared to apigenin in reduction of cell’s viability and induction of cell death of HCT116 cells. Treatment with both compounds resulted in chromatin condensation, apoptotic bodies formation and apoptotic genes expression in HCT116 cells, but the apigenin-7-O-glucoside required a lower concentration to achieve the same
effect. Compounds apigenin-7-O-glucoside and apigenin displayed prominent antifungal potential and cytotoxic effect on HCT116 cells. However, our results showed that apigenin-7-O-glucoside has more potent activity compared to apigenin in all assays that we used
Thermal, dynamic and structural properties of drug AT1 antagonist olmesartan in lipid bilayers
It is proposed that AT1 antagonists (ARBs) exert their biological action by inserting into the lipid membrane
and then diffuse to the active site of AT1 receptor. Thus, lipid bilayers are expected to be actively involved and
play a critical role in drug action. For this reason, the thermal, dynamic and structural effects of olmesartan
alone and together with cholesterol were studied using differential scanning calorimetry (DSC), 13C magicangle spinning (MAS) nuclear magnetic resonance (NMR), cross-polarization (CP) MAS NMR, and Raman
spectroscopy as well as small- and wide angle X-ray scattering (SAXS and WAXS) on dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles. 13C CP/MAS spectra provided direct evidence for the
incorporation of olmesartan and cholesterol in lipid bilayers. Raman and X-ray data revealed how both
molecules modify the bilayer's properties. Olmesartan locates itself at the head-group region and upper
segment of the lipid bilayers as 13C CP/MAS spectra show that its presence causes significant chemical
shift changes mainly in the A ring of the steroidal part of cholesterol. The influence of olmesartan on
DPPC/cholesterol bilayers is less pronounced. Although, olmesartan and cholesterol are residing at the
same region of the lipid bilayers, due to their different sizes, display distinct impacts on the bilayer's
properties. Cholesterol broadens significantly the main transition, abolishes the pre-transition, and decreases the
membrane fluidity above the main transition. Olmesartan is the only so far studied ARB that increases the
gauche:trans ratio in the liquid crystalline phase. These significant differences of olmesartan may in part
explain its distinct pharmacological profile
Rational design, efficient syntheses and biological evaluation of N,N′-symmetrically bis-substituted butylimidazole analogs as a new class of potent Angiotensin II receptor blockers
A series of symmetrically bis-substituted imidazole analogs bearing at the N-1 and N-3 two biphenyl moieties ortho substituted either with tetrazole or carboxylate functional groups was designed based on docking studies and utilizing for the first time an extra hydrophobic binding cleft of AT1 receptor. The synthesized analogs were evaluated for their in vitro antagonistic activities (pA2 values) and binding affinities (–logIC50 values) to the Angiotensin II AT1 receptor. Among them, the potassium (–logIC50 = 9.04) and the sodium (–logIC50 = 8.54) salts of 4-butyl-N,N′-bis{[2′-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (12a and 12b, respectively) as well as its free acid 11 (–logIC50 = 9.46) and the 4-butyl-2-hydroxymethyl-N,N′-bis{[2′-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (14) (–logIC50 = 8.37, pA2 = 8.58) showed high binding affinity to the AT1 receptor and high antagonistic activity (potency). The potency was similar or even superior to that of Losartan (–logIC50 = 8.25, pA2 = 8.25). On the contrary, 2-butyl-N,N′-bis{[2′-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (27) (–logIC50 = 5.77) and 2-butyl-4-chloro-5-hydroxymethyl-N,N′-bis{[2′-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (30) (–logIC50 = 6.38) displayed very low binding affinity indicating that the orientation of the n-butyl group is of primary importance. Docking studies of the representative highly active 12b clearly showed that this molecule has an extra hydrophobic binding feature compared to prototype drug Losartan and it fits to the extra hydrophobic cavity. These results may contribute to the discovery and development of a new class of biologically active molecules through bis-alkylation of the imidazole ring by a convenient and cost effective synthetic strategy
Evaluation of Selected CYP51A1 Polymorphisms in View of Interactions with Substrate and Redox Partner
Cholesterol is essential for development, growth, and maintenance of organisms. Mutations in cholesterol biosynthetic genes are embryonic lethal and few polymorphisms have been so far associated with pathologies in humans. Previous analyses show that lanosterol 14α-demethylase (CYP51A1) from the late part of cholesterol biosynthesis has only a few missense mutations with low minor allele frequencies and low association with pathologies in humans. The aim of this study is to evaluate the role of amino acid changes in the natural missense mutations of the hCYP51A1 protein. We searched SNP databases for existing polymorphisms of CYP51A1 and evaluated their effect on protein function. We found rare variants causing detrimental missense mutations of CYP51A1. Some missense variants were also associated with a phenotype in humans. Two missense variants have been prepared for testing enzymatic activity in vitro but failed to produce a P450 spectrum. We performed molecular modeling of three selected missense variants to evaluate the effect of the amino acid substitution on potential interaction with its substrate and the obligatory redox partner POR. We show that two of the variants, R277L and especially D152G, have possibly lower binding potential toward obligatory redox partner POR. D152G and R431H have also potentially lower affinity toward the substrate lanosterol. We evaluated the potential effect of damaging variants also using data from other in vitro CYP51A1 mutants. In conclusion, we propose to include damaging CYP51A1 variants into personalized diagnostics to improve genetic counseling for certain rare disease phenotypes
Unveiling the interaction profile of rosmarinicacid and its bioactive substructures with serumalbumin
Rosmarinic acid, a phytochemical compound, bears diverse pharmaceutical profile. It is composed by two
building blocks: caffeic acid and a salvianic acid unit. The interaction profile, responsible for the delivery
of rosmarinic acid and its two substructure components by serum albumin remains unexplored. To unveil
this, we established a novel low-cost and efficient method to produce salvianic acid from the parent compound. To probe the interaction profile of rosmarinic acid and its two substructure constituents with the
different serum albumin binding sites we utilised fluorescence spectroscopy and competitive saturation
transfer difference NMR experiments. These studies were complemented with transfer NOESY NMR experiments. The thermodynamics of the binding profile of rosmarinic acid and its substructures were addressed
using isothermal titration calorimetry. In silico docking studies, driven by the experimental data, have
been used to deliver further atomic details on the binding mode of rosmarinic acid and its structural component