12 research outputs found

    Metal-resistant rhizobacteria change soluble-exchangeable fraction in multi-metal-contaminated soil samples

    Get PDF
    There is a complex interaction between various components of the soil ecosystem, including microbial biomass and soil chemical contaminants such as heavy metals and radionuclides, which may greatly affect the efficiency of bioremediation techniques. The aim of this study was to investigate microbial capacity to change pH, changes in the metal soluble-exchangeable fraction, and effects of initial heavy metal contents on soil samples in microbial solubilization/immobilization capacity. The soil samples used in this study were collected at a known metal-contaminated site. Three highly metal-resistant bacteria were isolated from rhizosphere soil samples collected on weed species identified as Senecio brasiliensis, Senecio leptolobus, and Baccharis trimera. A completely randomized experimental design in a factorial arrangement was used, with three replicates. In general, with an acid pH, the isolates neutralized the contaminated growth media. In a neutral or basic initial pH, increases in pH were observed in the media, so these bacteria have an alkalizing effect on the growth media. Soluble metal contents were quite different and depend on the microbial species and heavy metal contents in the soil samples. The soluble-exchangeable fraction of metal such as Cu, Zn, Ni, Cr, Cd, Pb, and Ba may be unavailable after inoculation with heavy metalresistant rhizobacteria. A promising approach seems to be the application of inoculants with metal-resistant bacteria in bioremediation of multi-metal-polluted environments to improve the efficiency of this environmentally friendly technology

    Characterization of mercury resistant bacteria and strategies for bioremediation of environmental contamination

    No full text
    O mercúrio é tóxico, tanto para células eucarióticas quanto para procarióticas, mas alguns micro-organismos possuem mecanismos de resistência a este metal, como a capacidade de reduzir enzimaticamente o mercúrio (II) para a forma volátil e menos tóxica de mercúrio Hg (0). O objetivo do trabalho foi desenvolver uma estratégia com viabilidade econômica de aporte de carbono para remoção de mercúrio, avaliar o potencial bacteriano de remoção de mercúrio, cádmio, níquel e chumbo de ambientes contaminados (efluentes industriais) e identificar os distintos mecanismos de resistência envolvidos na resistência bacteriana aos metais. Oito isolados foram capazes de remover mercúrio e degradar o glicerol. Os melhores resultados para remoção de Hg e degradação do glicerol foram obtidos utilizando os isolados Serratia marcescens M25C (85 e 100%), Klebsiela pneumoniae PLB (90 e 100%), Klebsiela oxytoca U14 (90 e 100%) e Arthrobacter sp. U3 (80 e 65%) adicionando 0,5 g L-1 de extrato de levedura. O isolado Pseudomonas sp B50D foi o que apresentou melhor desempenho quando avaliada remoção de mercúrio concomitante a outros metais. Sua capacidade de remover Hg na presença de Cd foi de 75%, Ni e Pb (91%). Esse isolado removeu 60% (Cd), 90% (Ni) e 85% de Pb. Pseudomonas sp. B50D apresenta como mecanismos de resistência aos metais a redução, biossorção, produção de biofilme e produção de sideróforos. Foi demonstrado que o pH do efluente influencia a capacidade dos isolados Pseudomonas sp. B50A e Pseudomonas putida V1 removerem Hg, sendo que o pH 6 teve a melhor resposta de remoção. A capacidade dos isolados e do consórcio removerem mercúrio do efluente variou de 70 a 75%. Porém, com a adição de múltiplos metais no efluente a remoção do mercúrio foi inibida. Este trabalho demonstrou a viabilidade da utilização de glicerol residual como fonte de carbono para remoção biológica do Hg e o potencial do isolado Pseudomonas sp. B50D para remediação de contaminações mais complexas. Os isolados Pseudomonas sp. B50A e Pseudomonas putida V1 são recomendados para o tratamento de efluentes industriais contaminados com mercúrio, porém contaminações mais complexas (com outros metais) exigem a utilização concomitante de outros isolados bacterianos ou ainda outros métodos não avaliados neste estudo.Mercury is toxic to eukaryotic cells and prokaryotic, but some microorganisms possess mechanisms of resistance to this metal, as the ability to enzymatically reduce the mercury (II) to the volatile and less toxic form of mercury Hg (0). The goal of this study was to evaluate the potential for bacterial removal of mercury, cadmium, nickel and lead from industrial wastewater and to identify the differents resistance mechanisms involved in bacterial resistance to metals. Eight strains were able to remove mercury and degrade glycerol. The best results for the removal of mercury and glycerol degradation isolates were respectively obtained using Serratia marcescens M25C (85 and 100%), Klebsiella pneumoniae NBP (90 and 100%), Klebsiella oxytoca U14 (90 and 100%) and Arthrobacter sp. U3 (80 and 65%) by adding 0.5 g L-1 yeast extract. Pseudomonas sp. B50D showed the best result to concomitant mercury removal with other metals. Its ability to remove mercury in the presence of Cd was 75% to Ni and Pb was 91%. This bacterial isolate removed 60% of Cd, 90% of Ni and 85% of Pb from the effluent contaminated with mercury. The metals resistance mechanisms to metals reduction suggested to Pseudomonas sp. B50D were biosorption, biofilm production and production of siderophores. It has been shown that the effluent pH influences the ability of the isolated Pseudomonas sp B50A and Pseudomonas putida V1 remove Hg, and pH 6 had better removal response. The consortium removal mercury from the effluent ranging from 70 to 75%. However, with the addition of multiple metals in the effluent mercury removal was inhibited. This study demonstrated the feasibility of using residual glycerol as carbon source for the biological removal of mercury and the potential of the isolated Pseudomonas sp. B50D for remediation of complex contamination. The strains Pseudomonas sp. B50A and Pseudomonas putida V1 are recommended for the treatment of industrial wastewater contaminated with mercury, but a complex contamination (with other metals) require the concomitant use of other bacterial isolates or other methods that were not evaluated in this study

    Screening of mercury resistant microrganisms and characterization of mercury reductase from Pseudomonas sp. B50A

    No full text
    O mercúrio (Hg) é um dos metais com maior impacto sobre os ecossistemas e sua presença no ambiente tem origem natural ou antropogênica. O acúmulo do mercúrio no ambiente tem afetado a integridade dos ecossistemas e a saúde do homem. Contudo, algumas bactérias desenvolveram mecanismos de resistência, e com isso desempenham um papel muito importante na redução enzimática de Hg (II) a Hg0, a qual é uma forma volátil e de menor toxicidade deste metal. Assim, a redução microbiana de Hg (II) representa um recurso para desenvolvimento de métodos alternativos de tratamento de resíduos que contenham este metal, oferecendo vantagens, como baixo custo operacional e alta eficiência na remoção de mercúrio. Deste modo, os objetivos do estudo foram isolar microrganismos resistentes a mercúrio; determinar a concentração inibitória mínima de Hg; bem como, estimar a capacidade de volatilização de mercúrio pelos microrganismos selecionados; a dinâmica da volatilização do mercúrio; e a caracterização da enzima mercúrio redutase produzida pelo isolado B50A. Foram selecionadas 16 bactérias Gram-negativas resistentes a altas concentrações de mercúrio (50 mg L-1 a 210 mg L-1), sendo que todos os isolados foram capazes de volatilizar este metal. Os isolados B50A e M50C, volatilizaram 86% do mercúrio presente no meio e a remoção de Hg (II) não dependeu de altas taxas de crescimento populacional. A enzima presente no extrato bruto de B50A apresentou atividade ótima em pH 8, e temperaturas entre 37ºC e 45ºC. Os íons NH4 +, Ba2+, Sn2+, Ni2+ e Cd2+ não inibiram nem estimularam significativamente (p>0,05) a atividade da mercúrio redutase do isolado B50A, porém ocorreu queda significativa (p>0,05) da atividade na presença de Ca2+, Cu+ e K+. As bactérias isoladas e a enzima de B50A foram eficientes na redução de Hg (II) a Hg0, o que evidencia o potencial destes microrganismos para desenvolvimento de tecnologias e processos de biorremediação de resíduos contaminados com mercúrio.Mercury (Hg) is one of the metals that has had profound influence on all ecosystems, and can occur in the in the environment as a natural and anthropogenic phenomenon. The accumulation of mercury has affected the integrity of ecosystems and human health. However, some bacterias have developed biological mechanisms for mercury resistance, and subsequently perform an important role in the enzymatic reduction of Hg(II) to Hg(0), this being a volatile and less toxic form of the metal.The process of microbial Hg (II) reduction represents an area of development for alternative methods of waste treatment, with potentially low operating costs and high removal efficiencies. This study presents the screening of microrganisms resistant to mercury, and the determination of the minimum inhibitory concentration of Hg. An estimation of the mercury volatilization by selected microorganisms, the dynamics of volatilization, and the characterization of mercury reductase produced by the isolated B50A, are all addressed. Sixteen Gram-negative bacteria resistant to high concentrations of mercury (50 mg L-1 to 210 mg L-1) were selected, and these isolates showed ability to volatilize the metal. The dynamics of the volatilization of the B50A and M50C isolates demonstrated that in only 4 hours of incubation it was possible to volatilize 86% of the mercury present in the culture. The latter also demonstrating that the removal of Hg (II) is independent of high biomass formation. The enzyme present in the crude extract of B50A showed optimal activity at pH 8 and temperatures ranging between 37 and 45°C. The presence of NH 4 +, Ba2+, Sn2+, Ni2+ and Cd2+ did not significantly (p<0,05) inhibited or stimulated the activity of mercury reductase B50A, but significant (p<0,05) reduction in activity was observed in the presence of Ca2+, Cu+ and K+ . The isolates bacteria and mercury reductase produced by the isolated B50A were efficient in reducing Hg (II) to Hg0, this demonstrated the potential of these microorganisms to augment technologies for bioremediation processes for waste contaminated with mercury

    Characterization of mercury resistant bacteria and strategies for bioremediation of environmental contamination

    No full text
    O mercúrio é tóxico, tanto para células eucarióticas quanto para procarióticas, mas alguns micro-organismos possuem mecanismos de resistência a este metal, como a capacidade de reduzir enzimaticamente o mercúrio (II) para a forma volátil e menos tóxica de mercúrio Hg (0). O objetivo do trabalho foi desenvolver uma estratégia com viabilidade econômica de aporte de carbono para remoção de mercúrio, avaliar o potencial bacteriano de remoção de mercúrio, cádmio, níquel e chumbo de ambientes contaminados (efluentes industriais) e identificar os distintos mecanismos de resistência envolvidos na resistência bacteriana aos metais. Oito isolados foram capazes de remover mercúrio e degradar o glicerol. Os melhores resultados para remoção de Hg e degradação do glicerol foram obtidos utilizando os isolados Serratia marcescens M25C (85 e 100%), Klebsiela pneumoniae PLB (90 e 100%), Klebsiela oxytoca U14 (90 e 100%) e Arthrobacter sp. U3 (80 e 65%) adicionando 0,5 g L-1 de extrato de levedura. O isolado Pseudomonas sp B50D foi o que apresentou melhor desempenho quando avaliada remoção de mercúrio concomitante a outros metais. Sua capacidade de remover Hg na presença de Cd foi de 75%, Ni e Pb (91%). Esse isolado removeu 60% (Cd), 90% (Ni) e 85% de Pb. Pseudomonas sp. B50D apresenta como mecanismos de resistência aos metais a redução, biossorção, produção de biofilme e produção de sideróforos. Foi demonstrado que o pH do efluente influencia a capacidade dos isolados Pseudomonas sp. B50A e Pseudomonas putida V1 removerem Hg, sendo que o pH 6 teve a melhor resposta de remoção. A capacidade dos isolados e do consórcio removerem mercúrio do efluente variou de 70 a 75%. Porém, com a adição de múltiplos metais no efluente a remoção do mercúrio foi inibida. Este trabalho demonstrou a viabilidade da utilização de glicerol residual como fonte de carbono para remoção biológica do Hg e o potencial do isolado Pseudomonas sp. B50D para remediação de contaminações mais complexas. Os isolados Pseudomonas sp. B50A e Pseudomonas putida V1 são recomendados para o tratamento de efluentes industriais contaminados com mercúrio, porém contaminações mais complexas (com outros metais) exigem a utilização concomitante de outros isolados bacterianos ou ainda outros métodos não avaliados neste estudo.Mercury is toxic to eukaryotic cells and prokaryotic, but some microorganisms possess mechanisms of resistance to this metal, as the ability to enzymatically reduce the mercury (II) to the volatile and less toxic form of mercury Hg (0). The goal of this study was to evaluate the potential for bacterial removal of mercury, cadmium, nickel and lead from industrial wastewater and to identify the differents resistance mechanisms involved in bacterial resistance to metals. Eight strains were able to remove mercury and degrade glycerol. The best results for the removal of mercury and glycerol degradation isolates were respectively obtained using Serratia marcescens M25C (85 and 100%), Klebsiella pneumoniae NBP (90 and 100%), Klebsiella oxytoca U14 (90 and 100%) and Arthrobacter sp. U3 (80 and 65%) by adding 0.5 g L-1 yeast extract. Pseudomonas sp. B50D showed the best result to concomitant mercury removal with other metals. Its ability to remove mercury in the presence of Cd was 75% to Ni and Pb was 91%. This bacterial isolate removed 60% of Cd, 90% of Ni and 85% of Pb from the effluent contaminated with mercury. The metals resistance mechanisms to metals reduction suggested to Pseudomonas sp. B50D were biosorption, biofilm production and production of siderophores. It has been shown that the effluent pH influences the ability of the isolated Pseudomonas sp B50A and Pseudomonas putida V1 remove Hg, and pH 6 had better removal response. The consortium removal mercury from the effluent ranging from 70 to 75%. However, with the addition of multiple metals in the effluent mercury removal was inhibited. This study demonstrated the feasibility of using residual glycerol as carbon source for the biological removal of mercury and the potential of the isolated Pseudomonas sp. B50D for remediation of complex contamination. The strains Pseudomonas sp. B50A and Pseudomonas putida V1 are recommended for the treatment of industrial wastewater contaminated with mercury, but a complex contamination (with other metals) require the concomitant use of other bacterial isolates or other methods that were not evaluated in this study

    Screening of mercury resistant microrganisms and characterization of mercury reductase from Pseudomonas sp. B50A

    No full text
    O mercúrio (Hg) é um dos metais com maior impacto sobre os ecossistemas e sua presença no ambiente tem origem natural ou antropogênica. O acúmulo do mercúrio no ambiente tem afetado a integridade dos ecossistemas e a saúde do homem. Contudo, algumas bactérias desenvolveram mecanismos de resistência, e com isso desempenham um papel muito importante na redução enzimática de Hg (II) a Hg0, a qual é uma forma volátil e de menor toxicidade deste metal. Assim, a redução microbiana de Hg (II) representa um recurso para desenvolvimento de métodos alternativos de tratamento de resíduos que contenham este metal, oferecendo vantagens, como baixo custo operacional e alta eficiência na remoção de mercúrio. Deste modo, os objetivos do estudo foram isolar microrganismos resistentes a mercúrio; determinar a concentração inibitória mínima de Hg; bem como, estimar a capacidade de volatilização de mercúrio pelos microrganismos selecionados; a dinâmica da volatilização do mercúrio; e a caracterização da enzima mercúrio redutase produzida pelo isolado B50A. Foram selecionadas 16 bactérias Gram-negativas resistentes a altas concentrações de mercúrio (50 mg L-1 a 210 mg L-1), sendo que todos os isolados foram capazes de volatilizar este metal. Os isolados B50A e M50C, volatilizaram 86% do mercúrio presente no meio e a remoção de Hg (II) não dependeu de altas taxas de crescimento populacional. A enzima presente no extrato bruto de B50A apresentou atividade ótima em pH 8, e temperaturas entre 37ºC e 45ºC. Os íons NH4 +, Ba2+, Sn2+, Ni2+ e Cd2+ não inibiram nem estimularam significativamente (p>0,05) a atividade da mercúrio redutase do isolado B50A, porém ocorreu queda significativa (p>0,05) da atividade na presença de Ca2+, Cu+ e K+. As bactérias isoladas e a enzima de B50A foram eficientes na redução de Hg (II) a Hg0, o que evidencia o potencial destes microrganismos para desenvolvimento de tecnologias e processos de biorremediação de resíduos contaminados com mercúrio.Mercury (Hg) is one of the metals that has had profound influence on all ecosystems, and can occur in the in the environment as a natural and anthropogenic phenomenon. The accumulation of mercury has affected the integrity of ecosystems and human health. However, some bacterias have developed biological mechanisms for mercury resistance, and subsequently perform an important role in the enzymatic reduction of Hg(II) to Hg(0), this being a volatile and less toxic form of the metal.The process of microbial Hg (II) reduction represents an area of development for alternative methods of waste treatment, with potentially low operating costs and high removal efficiencies. This study presents the screening of microrganisms resistant to mercury, and the determination of the minimum inhibitory concentration of Hg. An estimation of the mercury volatilization by selected microorganisms, the dynamics of volatilization, and the characterization of mercury reductase produced by the isolated B50A, are all addressed. Sixteen Gram-negative bacteria resistant to high concentrations of mercury (50 mg L-1 to 210 mg L-1) were selected, and these isolates showed ability to volatilize the metal. The dynamics of the volatilization of the B50A and M50C isolates demonstrated that in only 4 hours of incubation it was possible to volatilize 86% of the mercury present in the culture. The latter also demonstrating that the removal of Hg (II) is independent of high biomass formation. The enzyme present in the crude extract of B50A showed optimal activity at pH 8 and temperatures ranging between 37 and 45°C. The presence of NH 4 +, Ba2+, Sn2+, Ni2+ and Cd2+ did not significantly (p<0,05) inhibited or stimulated the activity of mercury reductase B50A, but significant (p<0,05) reduction in activity was observed in the presence of Ca2+, Cu+ and K+ . The isolates bacteria and mercury reductase produced by the isolated B50A were efficient in reducing Hg (II) to Hg0, this demonstrated the potential of these microorganisms to augment technologies for bioremediation processes for waste contaminated with mercury

    Isolation and selection of microorganisms resistant and able to volatilize mercury

    Get PDF
    Mercury (Hg) occurs in the environment as a natural and anthropogenic element, and through the years the accumulation of mercury has affected the integrity of ecosystems and human health. This study presents a screening of microorganisms resistant to organic and inorganic mercury, the determination of the minimum inhibitory concentration of Hg, the estimation of the mercury volatilization by selected microorganisms and the dynamics of volatilization. Eight Gram-negative bacteria resistant to high concentrations of mercury (60 to 210 mg L-1) were selected, and these isolates showed ability to volatilize the metal. The dynamics of the volatilization of the Proteus mirabilis M50C demonstrated that in only 4 h of incubation it was possible to volatilize 72% of the mercury present in the culture. The results showed promising application for bioremediation strategies

    Isolation and selection of microorganisms resistant and able to volatilize mercury

    Get PDF
    Mercury (Hg) occurs in the environment as a natural and anthropogenic element, and through the years the accumulation of mercury has affected the integrity of ecosystems and human health. This study presents a screening of microorganisms resistant to organic and inorganic mercury, the determination of the minimum inhibitory concentration of Hg, the estimation of the mercury volatilization by selected microorganisms and the dynamics of volatilization. Eight Gram-negative bacteria resistant to high concentrations of mercury (60 to 210 mg L-1) were selected, and these isolates showed ability to volatilize the metal. The dynamics of the volatilization of the Proteus mirabilis M50C demonstrated that in only 4 h of incubation it was possible to volatilize 72% of the mercury present in the culture. The results showed promising application for bioremediation strategies

    Metal-resistant rhizobacteria change soluble-exchangeable fraction in multi-metal-contaminated soil samples

    No full text
    There is a complex interaction between various components of the soil ecosystem, including microbial biomass and soil chemical contaminants such as heavy metals and radionuclides, which may greatly affect the efficiency of bioremediation techniques. The aim of this study was to investigate microbial capacity to change pH, changes in the metal soluble-exchangeable fraction, and effects of initial heavy metal contents on soil samples in microbial solubilization/immobilization capacity. The soil samples used in this study were collected at a known metal-contaminated site. Three highly metal-resistant bacteria were isolated from rhizosphere soil samples collected on weed species identified as Senecio brasiliensis, Senecio leptolobus, and Baccharis trimera. A completely randomized experimental design in a factorial arrangement was used, with three replicates. In general, with an acid pH, the isolates neutralized the contaminated growth media. In a neutral or basic initial pH, increases in pH were observed in the media, so these bacteria have an alkalizing effect on the growth media. Soluble metal contents were quite different and depend on the microbial species and heavy metal contents in the soil samples. The soluble-exchangeable fraction of metal such as Cu, Zn, Ni, Cr, Cd, Pb, and Ba may be unavailable after inoculation with heavy metalresistant rhizobacteria. A promising approach seems to be the application of inoculants with metal-resistant bacteria in bioremediation of multi-metal-polluted environments to improve the efficiency of this environmentally friendly technology
    corecore