28 research outputs found

    Minutes of the CD-ROM Workshop

    Get PDF
    The workshop described in this document had two goals: (1) to establish guidelines for the CD-ROM as a tool to distribute datasets; and (2) to evaluate current scientific CD-ROM projects as an archive. Workshop attendees were urged to coordinate with European groups to develop CD-ROM, which is already available at low cost in the U.S., as a distribution medium for astronomical datasets. It was noted that NASA has made the CD Publisher at the National Space Science Data Center (NSSDC) available to the scientific community when the Publisher is not needed for NASA work. NSSDC's goal is to provide the Publisher's user with the hardware and software tools needed to design a user's dataset for distribution. This includes producing a master CD and copies. The prerequisite premastering process is described, as well as guidelines for CD-ROM construction. The production of discs was evaluated. CD-ROM projects, guidelines, and problems of the technology were discussed

    The Heliophysics Data Environment, Virtual Observatories, NSSDC, and SPASE

    Get PDF
    Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) has an interesting data environment in that the data are often to be found in relatively small data sets widely scattered in archives around the world. Within the last decade there have been more concentrated efforts to organize the data access methods and create a Heliophysics Data and Model Consortium (HDMC). To provide data search and access capability a number of Virtual Observatories (VO's) have been established both via funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Heliophysics Virtual Observatories, 9 of them funded by NASA. Other parts of this data environment include Resident Archives, and the final, or "deep" archive at the National Space Science Data Center (NSSDC). The problem is that different data search and access approaches are used by all of these elements of the HDMC and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's and other data environment elements. The SPASE Data Model has been developed through the common efforts of the HDMC representatives over a number of years. We currently have released Version 2.1. of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development

    Evolving the Technical Infrastructure of the Planetary Data System for the 21st Century

    Get PDF
    The Planetary Data System (PDS) was established in 1989 as a distributed system to assure scientific oversight. Initially the PDS followed guidelines recommended by the National Academies Committee on Data Management and Computation (CODMAC, 1982) and placed emphasis on archiving validated datasets. But overtime user demands, supported by increased computing capabilities and communication methods, have placed increasing demands on the PDS. The PDS must add additional services to better enable scientific analysis within distributed environments and to ensure that those services integrate with existing systems and data. To face these challenges the Planetary Data System (PDS) must modernize its architecture and technical implementation. The PDS 2010 project addresses these challenges. As part of this project, the PDS has three fundamental project goals that include: (1) Providing more efficient client delivery of data by data providers to the PDS (2) Enabling a stable, long-term usable planetary science data archive (3) Enabling services for the data consumer to find, access and use the data they require in contemporary data formats. In order to achieve these goals, the PDS 2010 project is upgrading both the technical infrastructure and the data standards to support increased efficiency in data delivery as well as usability of the PDS. Efforts are underway to interface with missions as early as possible and to streamline the preparation and delivery of data to the PDS. Likewise, the PDS is working to define and plan for data services that will help researchers to perform analysis in cost-constrained environments. This presentation will cover the PDS 2010 project including the goals, data standards and technical implementation plans that are underway within the Planetary Data System. It will discuss the plans for moving from the current system, version PDS 3, to version PDS 4

    PDS4: Developing the Next Generation Planetary Data System

    Get PDF
    The Planetary Data System (PDS) is in the midst of a major upgrade to its system. This upgrade is a critical modernization of the PDS as it prepares to support the future needs of both the mission and scientific community. It entails improvements to the software system and the data standards, capitalizing on newer, data system approaches. The upgrade is important not only for the purpose of capturing results from NASA planetary science missions, but also for improving standards and interoperability among international planetary science data archives. As the demands of the missions and science community increase, PDS is positioning itself to evolve and meet those demands

    The NASA Tournament Laboratory (NTL): Improving Data Access at PDS while Spreading Joy and Engaging Students through 16 Micro-Contests

    Get PDF
    NASA PDS hosts terabytes of valuable data from hundreds of data sources and spans decades of research. Data is stored on flat-file systems regulated through careful meta dictionaries. PDS's data is available to the public through its website which supports data searches through drill-down navigation. While the system returns data quickly, result sets in response to identical input differ depending on the drill-down path a user follows. To correct this Issue, to allow custom searching, and to improve general accessibility, PDS sought to create a new data structure and API, and to use them to build applications that are a joy to use and showcase the value of the data to students, teachers and citizens. PDS engaged TopCoder and Harvard Business School through the NTL to pursue these objectives in a pilot effort. Scope was limited to Small Bodies Node data. NTL analyzed data, proposed a solution, and implemented it through a series of micro-contests. Contest focused on different segments of the problem; conceptualization, architectural design, implementation, testing, etc. To demonstrate the utility of the completed solution, NTL developed web-based and mobile applications that can compare targets, regardless of mission. To further explore the potential of the solution NTL hosted "Mash-up" challenges that integrated the API with other publically available assets, to produce consumer and teaching applications, including an Augmented Reality iPad tool. Two contests were also posted to middle and high school students via the NoNameSite.com platform, and as a result of these contests, PDS/SBN has initiated a Facebook program. These contests defined and implemented a data warehouse with the necessary migration tools to transform legacy data, produced a public web interface for the new search, developed a public API, and produced four mobile applications that we expect to appeal to users both within and, without the academic community

    Restoration of Apollo Data by the Lunar Data Project/PDS Lunar Data Node: An Update

    Get PDF
    The Apollo 11, 12, and 14 through 17 missions orbited and landed on the Moon, carrying scientific instruments that returned data from all phases of the missions, included long-lived Apollo Lunar Surface Experiments Packages (ALSEPs) deployed by the astronauts on the lunar surface. Much of these data were never archived, and some of the archived data were on media and in formats that are outmoded, or were deposited with little or no useful documentation to aid outside users. This is particularly true of the ALSEP data returned autonomously for many years after the Apollo missions ended. The purpose of the Lunar Data Project and the Planetary Data System (PDS) Lunar Data Node is to take data collections already archived at the NASA Space Science Data Coordinated Archive (NSSDCA) and prepare them for archiving through PDS, and to locate lunar data that were never archived, bring them into NSSDCA, and then archive them through PDS. Preparing these data for archiving involves reading the data from the original media, be it magnetic tape, microfilm, microfiche, or hard-copy document, converting the outmoded, often binary, formats when necessary, putting them into a standard digital form accepted by PDS, collecting the necessary ancillary data and documentation (metadata) to ensure that the data are usable and well-described, summarizing the metadata in documentation to be included in the data set, adding other information such as references, mission and instrument descriptions, contact information, and related documentation, and packaging the results in a PDS-compliant data set. The data set is then validated and reviewed by a group of external scientists as part of the PDS final archive process. We present a status report on some of the data sets that we are processing

    The digital archive of the International Halley Watch

    Get PDF
    The International Halley Watch was established to coordinate, collect, archive, and distribute the scientific data from Comet P/Halley that would be obtained from both the ground and space. This paper describes one of the end products of that effort, namely the IHW Digital Archive. The IHW Digital Archive consists of 26 CD-ROM's containing over 32 gigabytes of data from the 9 IHW disciplines as well as data from the 5 spacecraft missions flown to comet P/Haley and P/Giacobini-Zinner. The total archive contains over 50,000 observations by 1,500 observers from at least 40 countries. The first 24 CD's, which are currently available, contain data from the 9 IHW disciplines. The two remaining CD's will have the spacecraft data and should be available within the next year. A test CD-ROM of these data has been created and is currently under review

    NLSI Focus Group on Missing ALSEP Data Recovery: Progress and Plans

    Get PDF
    On the six Apollo landed missions, the Astronauts deployed the Apollo Lunar Surface Experiments Package (ALSEP) science stations which measured active and passive seismic events, magnetic fields, charged particles, solar wind, heat flow, the diffuse atmosphere, meteorites and their ejecta, lunar dust, etc. Today's scientists are able to extract new information and make new discoveries from the old ALSEP data utilizing recent advances in computer capabilities and new analysis techniques. However, current-day investigators are encountering problems trying to use the ALSEP data. In 2007 archivists from NASA Goddard Space Flight Center (GSFC) National Space Science Data Center (NSSDC) estimated only about 50 percent of the processed ALSEP lunar surface data-of-interest to current lunar science investigators were in the NSSDC archives. The current-day lunar science investigators found most of the ALSEP data, then in the NSSDC archives. were extremely difficult to use. The data were in forms often not well described in the published reports and rerecording anomalies existed in the data which could only be resolved by tape experts. To resolve this problem, the DPS Lunar Data Node was established in 2008 at NSSDC and is in the process of successfully making the existing archived ALSEP data available to current-day investigators in easily useable forms. In July of 2010 the NASA Lunar Science Institute (NLSI) at Ames Research Center established the Recovery of Missing ALSEP Data Focus Group in recognition of the importance of the current activities to find the raw and processed ALSEP data missing from the NSSDC archives

    Search and Recovery Efforts for the ALSEP Data Tapes

    Get PDF
    On NASA's first human lunar landing on Apollo II in July 1969, the astronauts deployed a set of scientific instruments called Early Apollo Science Experiments Package (EASEP). It was powered by a solar panel and operated for -20 earth-days and transmitted data to the Earth. This paved a way for deployment of more expansive instrument packages, powered by radioisotope thermoelectric generators, on Apollo 12, 14, 15, 16, and 17 in November 1969 through December 1972. They were called Apollo Lunar Surface Experiments Packages (ALSEPs). Each ALSEP consisted of a variety of instruments such as seismometers, magnetometers, solar wind spectrometers, heat flow probes, etc. The majority of these instruments kept functioning long after their one-year design lifetime requirement, and they transmitted data to the Earth until September 1977, when the program ended. Over the three decades that followed, users of the NSSDC-archived data have learned that many of the ALSEP instrument data are not complete. The present work is a progress report on the authors' recent effort for restoring the entire raw ALSEP data that were received from the Moon

    NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)

    Get PDF
    Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. These measurements have become particularly important since recent observations by the Lunar Crater Observation and Sensing Satellite (LCROSS) mission point to significant amounts of water and other volatiles sequestered within polar lunar cold traps. Moreover Chandrayaan/M3, EPOXI and Cassini/VIMS have identified molecular water and hydroxyl on lunar surface regolith grains. Variability in concentration suggests these species are likely to be present in the exosphere, and thus constitute a source for the cold traps. NASA s Lunar Atmosphere and Dust Environment Explorer (LADEE) is currently under development to address these goals. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. LADEE s results are relevant to surface boundary exospheres and dust processes throughout the solar system, will address questions regarding the origin and evolution of lunar volatiles, and will have implications for future exploration activities. LADEE will be the first mission based on the Ames Common Bus design. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS), an Ultraviolet/Visible Spectrometer (UVS), and the Lunar Dust Experiment (LDEX). It will also carry a space terminal as part of the Lunar Laser Communication Demonstration (LLCD), which is a technology demonstration. LLCD will also supply a ground terminal. LLCD is funded by the Space Operations Mission Directorate (SOMD), managed by GSFC, and built by MIT Lincoln Lab. NMS was directed to the Goddard Space Flight Center (GSFC) and UVS to Ames Research Center (ARC). LDEX was selected through the Stand Alone Missions of Opportunity Notice (SALMON) Acquisition Process, and is provided by the University of Colorado at Boulder. The LADEE NMS covers a m/z range of 2-150 and draws its design from mass spectrometers developed at GSFC for the MSL/SAM, Cassini Orbiter, CONTOUR, and MAVEN missions. The UVS instrument is a next-generation, high-reliability version of the LCROSS UV-Vis spectrometer, spanning 250-800 nm wavelength, with high (<1 nm) spectral resolution. UVS will also perform dust occultation measurements via a solar viewer optic. LDEX senses dust impacts in situ, at LADEE orbital altitudes of 50 km and below, with a particle size range of between 100 nm and 5 micron. Dust particle impacts on a large hemispherical target create electron and ion pairs. The latter are focused and accelerated in an electric field and detected at a microchannel plate. LADEE is an important part of NASA s portfolio of near-term lunar missions; launch is planned for May, 2013. The lunar atmosphere is the most accessible example of a surface boundary exosphere, and may reveal the sources and cycling of volatiles. Dynamic dust activity must be accounted for in the design and operation of lunar surface operations
    corecore