1,881 research outputs found
Dynamics of Nucleation in the Ising Model
Reactive pathways to nucleation in a three-dimensional Ising model at 60% of
the critical temperature are studied using transition path sampling of single
spin flip Monte Carlo dynamics. Analysis of the transition state ensemble (TSE)
indicates that the critical nuclei are rough and anisotropic. The TSE,
projected onto the free energy surface characterized by cluster size, N, and
surface area, S, indicates the significance of other variables in addition to
these two traditional reaction coordinates for nucleation. The transmission
coefficient along N is ~ 0.35, and this reduction of the transmission
coefficient from unity is explained in terms of the stochastic nature of the
dynamic model.Comment: In press at the Journal of Physical Chemistry B, 7 pages, 8 figure
Optical Conductivity and Hall Coefficient in High-Tc Superconductors: Significant Role of Current Vertex Corrections
We study AC conductivities in high-Tc cuprates, which offer us significant
information to reveal the true electronic ground states. Based on the
fluctuation-exchange (FLEX) approximation, current vertex corrections (CVC's)
are correctly taken into account to satisfy the conservation laws. We find the
significant role of the CVC's on the optical Hall conductivity in the presence
of strong antiferromagnetic (AF) fluctuations. This fact leads to the failure
of the relaxation time approximation (RTA). As a result, experimental highly
unusual behaviors, (i) prominent frequency and temperature dependences of the
optical Hall coefficient, and (ii) simple Drude form of the optical Hall andge
for wide range of frequencies, are satisfactorily reproduced. In conclusion,
both DC and AC transport phenomena in (slightly under-doped) high-Tc cuprates
can be explained comprehensively in terms of nearly AF Fermi liquid, if one
take the CVC's into account.Comment: 5 page
Infrared Hall effect in high Tc superconductors: Evidence for non-Fermi liquid Hall scattering
Infrared (20-120 cm-1 and 900-1100 cm-1) Faraday rotation and circular
dichroism are measured in high Tc superconductors using sensitive polarization
modulation techniques. Optimally doped YBCO thin films are studied at
temperatures down to 15 K and magnetic fields up to 8 T. At 1000 cm-1 the Hall
conductivity varies strongly with temperature in contrast to the longitudinal
conductivity which is nearly independent of temperature. The Hall scattering
rate has a T^2 temperature dependence but, unlike a Fermi liquid, depends only
weakly on frequency. The experiment puts severe constraints on theories of
transport in the normal state of high Tc superconductors.Comment: 8 pages, 3 figure
Electrostatics of Edge States of Quantum Hall Systems with Constrictions: Metal--Insulator Transition Tuned by External Gates
The nature of a metal--insulator transition tuned by external gates in
quantum Hall (QH) systems with point constrictions at integer bulk filling, as
reported in recent experiments of Roddaro et al. [1], is addressed. We are
particularly concerned here with the insulating behavior--the phenomena of
backscattering enhancement induced at high gate voltages. Electrostatics
calculations for QH systems with split gates performed here show that
observations are not a consequence of interedge interactions near the point
contact. We attribute the phenomena of backscattering enhancement to a
splitting of the integer edge into conducting and insulating stripes, which
enable the occurrence of the more relevant backscattering processes of
fractionally charged quasiparticles at the point contact. For the values of the
parameters used in the experiments we find that the conducting channels are
widely separated by the insulating stripes and that their presence alters
significantly the low-energy dynamics of the edges. Interchannel impurity
scattering does not influence strongly the tunneling exponents as they are
found to be irrelevant processes at low energies. Exponents of backscattering
at the point contact are unaffected by interchannel Coulomb interactions since
all channels have same chirality of propagation.Comment: 19 pages; To appear in Phys. Rev.
Two-dimensional hole precession in an all-semiconductor spin field effect transistor
We present a theoretical study of a spin field-effect transistor realized in
a quantum well formed in a p--doped ferromagnetic-semiconductor-
nonmagnetic-semiconductor-ferromagnetic-semiconductor hybrid structure. Based
on an envelope-function approach for the hole bands in the various regions of
the transistor, we derive the complete theory of coherent transport through the
device, which includes both heavy- and light-hole subbands, proper modeling of
the mode matching at interfaces, integration over injection angles, Rashba spin
precession, interference effects due to multiple reflections, and gate-voltage
dependences. Numerical results for the device current as a function of
externally tunable parameters are in excellent agreement with approximate
analytical formulae.Comment: 9 pages, 11 figure
Strongly Correlated Fractional Quantum Hall Line Junctions
We have studied a clean finite-length line junction between interacting
counterpropagating single-branch fractional-quantum-Hall edge channels. Exact
solutions for low-lying excitations and transport properties are obtained when
the two edges belong to quantum Hall systems with different filling factors and
interact via the long-range Coulomb interaction. Charging effects due to the
coupling to external edge-channel leads are fully taken into account.
Conductances and power laws in the current-voltage characteristics of tunneling
are strongly affected by inter-edge correlations.Comment: 4 pages, 1 figure, RevTex4, typos corrected + references added, to
appear in Phys. Rev. Let
Coulomb drag of Luttinger liquids and quantum-Hall edges
We study the transconductance for two coupled one-dimensional wires or edge
states described by Luttinger liquid models. The wires are assumed to interact
over a finite segment. We find for the interaction parameter that the
drag rate is finite at zero temperature, which cannot occur in a Fermi-liquid
system. The zero temperature drag is, however, cut off at low temperature due
to the finite length of the wires. We also consider edge states in the
fractional quantum Hall regime, and we suggest that the low temperature
enhancement of the drag effect might be seen in the fractional quantum Hall
regime.Comment: 5 pages, 2 figures; to appear in Phys. Rev. Let
Separately contacted edge states: A new spectroscopic tool for the investigation of the quantum Hall effect
Using an innovative combination of a quasi-Corbino sample geometry and the
cross-gate technique, we have developed a method that enables us to separately
contact single edge channels in the quantum Hall regime and investigate
equilibration among them. Performing 4-point resistance measurements, we
directly obtain information on the energetic and geometric structure of the
edge region and the equilibration-length for current transport across the
Landau- as well as the spin-gap. Based on an almost free choice in the number
of participating edge channels and their interaction-length a systematic
investigation of the parameter-space becomes possible.Comment: 8 pages, 7 figure
A new foundational crisis in mathematics, is it really happening?
The article reconsiders the position of the foundations of mathematics after
the discovery of HoTT. Discussion that this discovery has generated in the
community of mathematicians, philosophers and computer scientists might
indicate a new crisis in the foundation of mathematics. By examining the
mathematical facts behind HoTT and their relation with the existing
foundations, we conclude that the present crisis is not one. We reiterate a
pluralist vision of the foundations of mathematics. The article contains a
short survey of the mathematical and historical background needed to understand
the main tenets of the foundational issues.Comment: Final versio
Exactly Soluble Model for Umklapp Scattering at Quantum-Hall Edges
We consider the low-energy, long-wave-length excitations of a reconstructed
quantum-Hall edge where three branches of chiral one-dimensional edge
excitations exist. We find that, in addition to forward scattering between the
three edge-excitation branches, Coulomb interaction gives rise to a novel
Umklapp-type scattering process that cannot be accounted for within a
generalized Tomonaga-Luttinger model. We solve the theory including Umklapp
processes exactly in the long-wave-length limit and calculate electronic
correlation functions.Comment: 5 pages, 1 figure, final version, to appear in PRL (20Dec1999
- …