2,089 research outputs found

    Inertial Upper Stage (IUS) software analysis

    Get PDF
    The Inertial Upper Stage (IUS) System, an extension of the Space Transportation System (STS) operating regime to include higher orbits, orbital plane changes, geosynchronous orbits, and interplanetary trajectories is presented. The IUS software design, the IUS software interfaces with other systems, and the cost effectiveness in software verification are described. Tasks of the IUS discussed include: (1) design analysis; (2) validation requirements analysis; (3) interface analysis; and (4) requirements analysis

    Smoothing a Rock by Chipping

    Full text link
    We investigate an idealized model for the size reduction and smoothing of a polygonal rock due to repeated chipping at corners. Each chip is sufficiently small so that only a single corner and a fraction of its two adjacent sides are cut from the object in a single chipping event. After many chips have been cut away, the resulting shape of the rock is generally anisotropic, with facet lengths and corner angles distributed over a broad range. Although a well-defined shape is quickly reached for each realization, there are large fluctuations between realizations.Comment: 7 pages, 10 figures, 2-column revtex4 format; version 2: final published form in PRE; contains minor changes in response to referee comment

    Nanometer-scale sharpness in corner-overgrown heterostructures

    Full text link
    A corner-overgrown GaAs/AlGaAs heterostructure is investigated with transmission and scanning transmission electron microscopy, demonstrating self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In the AlGaAs layers we observe self-ordered diagonal stripes, precipitating exactly at the corner, which are regions of increased Al content measured by an XEDS analysis. A quantitative model for self-limited growth is adapted to the present case of faceted MBE growth, and the corner sharpness is discussed in relation to quantum confined structures. We note that MBE corner overgrowth maintains nm-sharpness even after microns of growth, allowing the realization of corner-shaped nanostructures.Comment: 4 pages, 3 figure

    Characterization of the mrgRS locus of the opportunistic pathogen Burkholderia pseudomallei: temperature regulates the expression of a two-component signal transduction system

    Get PDF
    BACKGROUND: Burkholderia pseudomallei is a saprophyte in tropical environments and an opportunistic human pathogen. This versatility requires a sensing mechanism that allows the bacterium to respond rapidly to altered environmental conditions. We characterized a two-component signal transduction locus from B. pseudomallei 204, mrgR and mrgS, encoding products with extensive homology with response regulators and histidine protein kinases of Escherichia coli, Bordetella pertussis, and Vibrio cholerae. RESULTS: The locus was present and expressed in a variety of B. pseudomallei human and environmental isolates but was absent from other Burkholderia species, B. cepacia, B. cocovenenans, B. plantarii, B. thailandensis, B. vandii, and B. vietnamiensis. A 2128 bp sequence, including the full response regulator mrgR, but not the sensor kinase mrgS, was present in the B. mallei genome. Restriction fragment length polymorphism downstream from mrgRS showed two distinct groups were present among B. pseudomallei isolates. Our analysis of the open reading frames in this region of the genome revealed that transposase and bacteriophage activity may help explain this variation. MrgR and MrgS proteins were expressed in B. pseudomallei 204 cultured at different pH, salinity and temperatures and the expression was substantially reduced at 25°C compared with 37°C or 42°C but was mostly unaffected by pH or salinity, although at 25°C and 0.15% NaCl a small increase in MrgR expression was observed at pH 5. MrgR was recognized by antibodies in convalescent sera pooled from melioidosis patients. CONCLUSION: The results suggest that mrgRS regulates an adaptive response to temperature that may be essential for pathogenesis, particularly during the initial phases of infection. B. pseudomallei and B. mallei are very closely related species that differ in their capacity to adapt to changing environmental conditions. Modifications in this region of the genome may assist our understanding of the reasons for this difference

    Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction

    Get PDF
    The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane

    Carbon Oxidation State in Microbial Polar Lipids Suggests Adaptation to Hot Spring Temperature and Redox Gradients

    Get PDF
    The influence of oxidation-reduction (redox) potential on the expression of biomolecules is a topic of ongoing exploration in geobiology. In this study, we investigate the novel possibility that structures and compositions of lipids produced by microbial communities are sensitive to environmental redox conditions. We extracted lipids from microbial biomass collected along the thermal and redox gradients of four alkaline hot springs in Yellowstone National Park (YNP) and investigated patterns in the average oxidation state of carbon (ZC), a metric calculated from the chemical formulae of lipid structures. Carbon in intact polar lipids (IPLs) and their alkyl chains becomes more oxidized (higher ZC) with increasing distance from each of the four hot spring sources. This coincides with decreased water temperature and increased concentrations of oxidized inorganic solutes, such as dissolved oxygen, sulfate, and nitrate. Carbon in IPLs is most reduced (lowest ZC) in the hot, reduced conditions upstream, with abundance-weighted ZC values between −1.68 and −1.56. These values increase gradually downstream to around −1.36 to −1.33 in microbial communities living between 29.0 and 38.1◦C. This near-linear increase in ZC can be attributed to a shift from ether-linked to ester-linked alkyl chains, a decrease in average aliphatic carbons per chain (nC), an increase in average degree of unsaturation per chain (nUnsat), and increased cyclization in tetraether lipids. The ZC of lipid headgroups and backbones did not change significantly downstream. Expression of lipids with relatively reduced carbon under reduced conditions and oxidized lipids under oxidized conditions may indicate microbial adaptation across environmental gradients in temperature and electron donor/acceptor supply

    Reconstruction of Fractional Quantum Hall Edges

    Full text link
    We study the interplay of interaction, confining potential and effects of finite temperature at the edge of a quantum Hall liquid. Our exact diagonalization calculation indicates that edge reconstruction occurs in the fractional quantum Hall regime for a variety of confining potential, including ones that correspond to a "sharp" edge. Our finite temperature Hartree-Fock calculation for integer quantum Hall edges indicates that reconstruction is suppressed above certain temperature. We discuss the implication of our results on recent edge tunneling and microwave absorption experiments.Comment: Revised version. 5 papges RevTex with 5 eps figures embedded in the tex

    Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses

    Get PDF
    To characterize the activity and interactions of methanotrophic archaea (ANME) and Deltaproteobacteria at a methane-seeping mud volcano, we used two complimentary measures of microbial activity: a community-level analysis of the transcription of four genes (16S rRNA, methyl coenzyme M reductase A (mcrA), adenosine-5′-phosphosulfate reductase α-subunit (aprA), dinitrogenase reductase (nifH)), and a single-cell-level analysis of anabolic activity using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). Transcript analysis revealed that members of the deltaproteobacterial groups Desulfosarcina/Desulfococcus (DSS) and Desulfobulbaceae (DSB) exhibit increased rRNA expression in incubations with methane, suggestive of ANME-coupled activity. Direct analysis of anabolic activity in DSS cells in consortia with ANME by FISH-NanoSIMS confirmed their dependence on methanotrophy, with no ^(15)NH^+_4 assimilation detected without methane. In contrast, DSS and DSB cells found physically independent of ANME (i.e., single cells) were anabolically active in incubations both with and without methane. These single cells therefore comprise an active ‘free-living’ population, and are not dependent on methane or ANME activity. We investigated the possibility of N_2 fixation by seep Deltaproteobacteria and detected nifH transcripts closely related to those of cultured diazotrophic Deltaproteobacteria. However, nifH expression was methane-dependent. ^(15)N_2 incorporation was not observed in single DSS cells, but was detected in single DSB cells. Interestingly, ^(15)N_2 incorporation in single DSB cells was methane-dependent, raising the possibility that DSB cells acquired reduced ^(15)N products from diazotrophic ANME while spatially coupled, and then subsequently dissociated. With this combined data set we address several outstanding questions in methane seep microbial ecosystems and highlight the benefit of measuring microbial activity in the context of spatial associations

    Gender and Patient Satisfaction with Primary Care: Tuning in to Women in Quality Measurement

    Full text link
    This study analyzes the relationship between patient gender and satisfaction with primary care visits, using 1999 survey data on 1691 women and 760 men making primary care visits at multiple sites affiliated with a large academic health system designated as a National Center of Excellence in Women's Health (COE). The main findings are that in multivariate analyses controlling for patient and visit characteristics, different aspects of the content of primary care visits are important to women and men. Women's overall satisfaction with visits is more dependent than men's on informational content, continuity of care, and multidisciplinarity. Men's overall satisfaction is more dependent on the personal interest shown in them by providers. No differences in satisfaction are found between those seen in sites affiliated with the COE and other primary care sites within the health system that are not core sites of the COE. We conclude that quality improvement and research in women's primary care could benefit from gender analysis of patient satisfaction data and from more gender-sensitive patient satisfaction measures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63266/1/15246090050118189.pd
    • …
    corecore