2,662 research outputs found

    Novel metallic and insulating states at a bent quantum Hall junction

    Full text link
    A non-planar geometry for the quantum Hall (QH) effect is studied, whereby two quantum Hall (QH) systems are joined at a sharp right angle. When both facets are at equal filling factor nu the junction hosts a channel with non-quantized conductance, dependent on nu. The state is metallic at nu = 1/3, with conductance along the junction increasing as the temperature T drops. At nu = 1, 2 it is strongly insulating, and at nu = 3, 4 shows only weak T dependence. Upon applying a dc voltage bias along the junction, the differential conductance again shows three different behaviors. Hartree calculations of the dispersion at the junction illustrate possible explanations, and differences from planar QH structures are highlighted.Comment: 5 pages, 4 figures, text + figs revised for clarit

    Measuring carrier density in parallel conduction layers of quantum Hall systems

    Full text link
    An experimental analysis for two parallel conducting layers determines the full resistivity tensor of the parallel layer, at magnetic fields where the other layer is in the quantum Hall regime. In heterostructures which exhibit parallel conduction in the modulation-doped layer, this analysis quantitatively determines the charge density in the doping layer and can be used to estimate the mobility. To illustrate one application, experimental data show magnetic freeze-out of parallel conduction in a modulation doped heterojunction. As another example, the carrier density of a minimally populated second subband in a two-subband quantum well is determined. A simple formula is derived that can estimate the carrier density in a highly resistive parallel layer from a single Hall measurement of the total system.Comment: 7 pages, 7 figure

    Russian-American Relations in World War I

    Get PDF

    A Threat to New Zealand\u27s Tuatara Heats Up

    Get PDF
    No matter how many times we head to one of New Zealand\u27s offshore islands, the feelings are always a mix of sheer awe at the beauty and biodiversity preserved in these special refuges and lingering nerves. Did we remember all the gear? Do we have enough food and water in case we get stuck? Can the helicopter land on the side of a cliff in these winds? These epic journeys are in pursuit of a lone remnant of the reptile evolutionary tree, with a unique ecology that has big implications under climate change

    Quantum Hall Effect in a Two-Dimensional Electron System Bent by 90 Degrees

    Full text link
    Using a new MBE growth technique, we fabricate a two-dimensional electron system which is bent around an atomically sharp 90 degree corner. In the quantum Hall regime under tilted magnetic fields, we can measure equilibration between both co- and counter-propagating edge channels of arbitrary filling factor ratio. We present here 4-point magnetotransport characterization of the corner junction with filling factor combinations which can all be explained using the standard Landauer-Buttiker edge channel picture. The success of this description confirms the realization of a new type of quantum Hall edge geometry.Comment: 4 pages, figures included Typographical errors corrected, reference adde

    Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples

    Get PDF
    Herein, a method for the determination of viscosities of small sample volumes is introduced, with important implications for the viscosity determination of particle samples from environmental chambers (used to simulate atmospheric conditions). The amount of sample needed is < 1 μl, and the technique is capable of determining viscosities (η) ranging between 10<sup>−3</sup> and 10<sup>3</sup> Pascal seconds (Pa s) in samples that cover a range of chemical properties and with real-time relative humidity and temperature control; hence, the technique should be well-suited for determining the viscosities, under atmospherically relevant conditions, of particles collected from environmental chambers. In this technique, supermicron particles are first deposited on an inert hydrophobic substrate. Then, insoluble beads (~1 μm in diameter) are embedded in the particles. Next, a flow of gas is introduced over the particles, which generates a shear stress on the particle surfaces. The sample responds to this shear stress by generating internal circulations, which are quantified with an optical microscope by monitoring the movement of the beads. The rate of internal circulation is shown to be a function of particle viscosity but independent of the particle material for a wide range of organic and organic-water samples. A calibration curve is constructed from the experimental data that relates the rate of internal circulation to particle viscosity, and this calibration curve is successfully used to predict viscosities in multicomponent organic mixtures

    Fermi liquid to Luttinger liquid transition at the edge of a two-dimensional electron gas

    Full text link
    We present experimental results on the tunneling into the edge of a two dimensional electron gas (2DEG) obtained with a GaAs/AlGaAs cleaved edge overgrown structure in a strong perpendicular magnetic field. While the 2DEG exhibits typical fractional quantum Hall features of a very high mobility sample, we observe the onset of a non-linear current-voltage characteristic in the vicinity of nu=1. For filling factor nu<1 the system is consistent with a non-Fermi liquid behavior, such as a Luttinger liquid, whereas for nu>1 we observe an Ohmic tunneling resistance between the edge and a three dimensional contact, typical for a Fermi liquid. Hence, at the edge, there is a transition from a Luttinger liquid to a Fermi liquid. Finally, we show that the Luttinger liquid exponent at a given filling factor is not universal but depends on sample parameters.Comment: 4 pages, 4 figure

    Single-valley high-mobility (110) AlAs quantum wells with anisotropic mass

    Full text link
    We studied a doping series of (110)-oriented AlAs quantum wells (QWs) and observed transport evidence of single anisotropic-mass valley occupancy for the electrons in a 150 \AA wide QW. Our calculations of strain and quantum confinement for these samples predict single anisotropic-mass valley occupancy for well widths WW greater than 53 \AA. Below this, double-valley occupation is predicted such that the longitudinal mass axes are collinear. We observed mobility anisotropy in the electronic transport along the crystallographic directions in the ratio of 2.8, attributed to the mass anisotropy as well as anisotropic scattering of the electrons in the X-valley of AlAs
    • …
    corecore