42 research outputs found

    fMRI Investigation of Cortical and Subcortical Networks in the Learning of Abstract and Effector-Specific Representations of Motor Sequences

    Get PDF
    A visuomotor sequence can be learned as a series of visuo-spatial cues or as a sequence of effector movements. Earlier imaging studies have revealed that a network of brain areas is activated in the course of motor sequence learning. However these studies do not address the question of the type of representation being established at various stages of visuomotor sequence learning. In an earlier behavioral study, we demonstrated that acquisition of visuo-spatial sequence representation enables rapid learning in the early stage and progressive establishment of somato-motor representation helps speedier execution by the late stage. We conducted functional magnetic resonance imaging (fMRI) experiments wherein subjects learned and practiced the same sequence alternately in normal and rotated settings. In one rotated setting (visual), subjects learned a new motor sequence in response to an identical sequence of visual cues as in normal. In another rotated setting (motor), the display sequence was altered as compared to normal, but the same sequence of effector movements were used to perform the sequence. Comparison of different rotated settings revealed analogous transitions both in the cortical and subcortical sites during visuomotor sequence learning ï‚Ÿ a transition of activity from parietal to parietal-premotor and then to premotor cortex and a concomitant shift was observed from anterior putamen to a combined activity in both anterior and posterior putamen and finally to posterior putamen. These results suggest a putative role for engagement of different cortical and subcortical networks at various stages of learning in supporting distinct sequence representations

    The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error

    Get PDF
    It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision
    corecore