2,060 research outputs found
Linking Heterogeneous Biodiversity Information Systems on the GRID: the GRAB Prototype
In the field of biodiversity informatics a wide range of diverse databases and tools already exists. The challenge is to integrate such resources in order to support scientists wishing to explore complex problems of relevance to biodiversity, and to create new resources where necessary. In this paper we outline the relevance of biodiversity informatics requirements to the future development of the GRID, identifying the main issues that need to be addressed in this area. We present GRAB (GRid And Biodiversity), which is a prototype demonstrator illustrating how one particular biodiversity-related task, namely bioclimatic modelling, can be supported in a Globus-based environment. We also describe a much larger-scale GRID application project that is just commencing (BiodiversityWorld) in which a flexible problem-solving environment is to be built for full-scale investigations by scientists working in a number of biodiversity research areas
The Influence of Physiological Status on age Prediction of Anopheles Arabiensis Using Near Infra-red spectroscopy
Determining the age of malaria vectors is essential for evaluating the impact of interventions that reduce the survival of wild mosquito populations and for estimating changes in vectorial capacity. Near infra-red spectroscopy (NIRS) is a simple and non-destructive method that has been used to determine the age and species of Anopheles gambiae s.l. by analyzing differences in absorption spectra. The spectra are affected by biochemical changes that occur during the life of a mosquito and could be influenced by senescence and also the life history of the mosquito, i.e., mating, blood feeding and egg-laying events. To better understand these changes, we evaluated the influence of mosquito physiological status on NIR energy absorption spectra. Mosquitoes were kept in individual cups to permit record keeping of each individual insect’s life history. Mosquitoes of the same chronological age, but at different physiological stages, were scanned and compared using cross-validations. We observed a slight trend within some physiological stages that suggest older insects tend to be predicted as being physiologically more mature. It was advantageous to include mosquitoes of different chronological ages and physiological stages in calibrations, as it increases the robustness of the model resulting in better age predictions. Progression through different physiological statuses of An. arabiensis influences the chronological age prediction by the NIRS. Entomologists that wish to use NIR technology to predict the age of field-caught An. gambiae s.l from their study area should use a calibration developed from their field strain using mosquitoes of diverse chronological ages and physiological stages to increase the robustness and accuracy of the predictions.\u
Recommended from our members
Discovery of a Potent and Selective DDR1 Receptor Tyrosine Kinase Inhibitor
The DDR1 receptor tyrosine kinase is activated by matrix collagens and has been implicated in numerous cellular functions such as proliferation, differentiation, adhesion, migration, and invasion. Here we report the discovery of a potent and selective DDR1 inhibitor, DDR1-IN-1, and present the 2.2 Å DDR1 co-crystal structure. DDR1-IN-1 binds to DDR1 in the ‘DFG-out’ conformation and inhibits DDR1 autophosphorylation in cells at submicromolar concentrations with good selectivity as assessed against a panel of 451 kinases measured using the KinomeScan technology. We identified a mutation in the hinge region of DDR1, G707A, that confers >20-fold resistance to the ability of DDR1-IN-1 to inhibit DDR1 autophosphorylation and can be used to establish what pharmacology is DDR1-dependent. A combinatorial screen of DDR1-IN-1 with a library of annotated kinase inhibitors revealed that inhibitors of PI3K and mTOR such as GSK2126458 potentiate the antiproliferative activity of DDR1-IN-1 in colorectal cancer cell lines. DDR1-IN-1 provides a useful pharmacological probe for DDR1-dependent signal transduction
Multiomic profiling of breast cancer cells uncovers stress MAPK-associated sensitivity to AKT degradation
More than 50% of human tumors display hyperactivation of the serine/threonine kinase AKT. Despite evidence of clinical efficacy, the therapeutic window of the current generation of AKT inhibitors could be improved. Here, we report the development of a second-generation AKT degrader, INY-05-040, which outperformed catalytic AKT inhibition with respect to cellular suppression of AKT-dependent phenotypes in breast cancer cell lines. A growth inhibition screen with 288 cancer cell lines confirmed that INY-05-040 had a substantially higher potency than our first-generation AKT degrader (INY-03-041), with both compounds outperforming catalytic AKT inhibition by GDC-0068. Using multiomic profiling and causal network integration in breast cancer cells, we demonstrated that the enhanced efficacy of INY-05-040 was associated with sustained suppression of AKT signaling, which was followed by induction of the stress mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). Further integration of growth inhibition assays with publicly available transcriptomic, proteomic, and reverse phase protein array (RPPA) measurements established low basal JNK signaling as a biomarker for breast cancer sensitivity to AKT degradation. Together, our study presents a framework for mapping the network-wide signaling effects of therapeutically relevant compounds and identifies INY-05-040 as a potent pharmacological suppressor of AKT signaling
Multiomic profiling of breast cancer cells uncovers stress MAPK-associated sensitivity to AKT degradation
More than 50% of human tumors display hyperactivation of the serine/threonine kinase AKT. Despite evidence of clinical efficacy, the therapeutic window of the current generation of AKT inhibitors could be improved. Here, we report the development of a second-generation AKT degrader, INY-05-040, which outperformed catalytic AKT inhibition with respect to cellular suppression of AKT-dependent phenotypes in breast cancer cell lines. A growth inhibition screen with 288 cancer cell lines confirmed that INY-05-040 had a substantially higher potency than our first-generation AKT degrader (INY-03-041), with both compounds outperforming catalytic AKT inhibition by GDC-0068. Using multiomic profiling and causal network integration in breast cancer cells, we demonstrated that the enhanced efficacy of INY-05-040 was associated with sustained suppression of AKT signaling, which was followed by induction of the stress mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). Further integration of growth inhibition assays with publicly available transcriptomic, proteomic, and reverse phase protein array (RPPA) measurements established low basal JNK signaling as a biomarker for breast cancer sensitivity to AKT degradation. Together, our study presents a framework for mapping the network-wide signaling effects of therapeutically relevant compounds and identifies INY-05-040 as a potent pharmacological suppressor of AKT signaling
Agent-based virtual organisations for the Grid
The ability to create reliable, scalable virtual organisations (VOs) on demand in a dynamic, open and competitive environment is one of the challenges that underlie Grid computing. In response, in the CONOISE-G project, we are developing an infrastructure to support robust and resilient virtual organisation formation and operation. Specifically, CONOISE-G provides mechanisms to assure effective operation of agent-based VOs in the face of disruptive and potentially malicious entities in dynamic, open and competitive environments. In this paper, we describe the CONOISE-G system, outline its use in VO formation and perturbation, and review current work on dealing with unreliable information sources
Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
A Comparison of Neuroelectrophysiology Databases
As data sharing has become more prevalent, three pillars - archives,
standards, and analysis tools - have emerged as critical components in
facilitating effective data sharing and collaboration. This paper compares four
freely available intracranial neuroelectrophysiology data repositories: Data
Archive for the BRAIN Initiative (DABI), Distributed Archives for
Neurophysiology Data Integration (DANDI), OpenNeuro, and Brain-CODE. These
archives provide researchers with tools to store, share, and reanalyze
neurophysiology data though the means of accomplishing these objectives differ.
The Brain Imaging Data Structure (BIDS) and Neurodata Without Borders (NWB) are
utilized by these archives to make data more accessible to researchers by
implementing a common standard. While many tools are available to reanalyze
data on and off the archives' platforms, this article features Reproducible
Analysis and Visualization of Intracranial EEG (RAVE) toolkit, developed
specifically for the analysis of intracranial signal data and integrated with
the discussed standards and archives. Neuroelectrophysiology data archives
improve how researchers can aggregate, analyze, distribute, and parse these
data, which can lead to more significant findings in neuroscience research.Comment: 25 pages, 8 figures, 1 tabl
Implementation and engagement of the SMART Work & Life sitting reduction intervention: an exploratory analysis on intervention effectiveness
Background: To enhance the impact of interventions, it is important to understand how intervention engagement relates to study outcomes. We report on the level of implementation and engagement with the SMART Work & Life (SWAL) programme (delivered with (SWAL plus desk) and without a height-adjustable desk (SWAL)) and explore the effects of different levels of this on change in daily sitting time in comparison to the control group. Methods: The extent of intervention delivery by workplace champions and the extent of engagement by champions and participants (staff) with each intervention activity was assessed by training attendance logs, workplace champion withdrawal dates, intervention activities logs and questionnaires. These data were used to assess whether a cluster met defined criteria for low, medium, or high implementation and engagement or none of these. Mixed effects linear regression analyses tested whether change in sitting time varied by: (i) the number of intervention activities implemented and engaged with, and (ii) the percentage of implementation and engagement with all intervention strategies. Results: Workplace champions were recruited for all clusters, with 51/52 (98%) attending training. Overall, 12/27 (44.4%) SWAL and 9/25 (36.0%) SWAL plus desk clusters implemented all main intervention strategies. Across remaining clusters, the level of intervention implementation varied. Those in the SWAL (n = 8 (29.6%) clusters, 80 (32.1%) participants) and SWAL plus desk (n = 5 (20.0%) clusters, 41 (17.1%) participants) intervention groups who implemented and engaged with the most intervention strategies and had the highest percentage of cluster implementation and engagement with all intervention strategies sat for 30.9 (95% CI -53.9 to -7.9, p = 0.01) and 75.6 (95% CI -103.6 to -47.7, p < 0.001) fewer minutes/day respectively compared to the control group at 12 month follow up. These differences were larger than the complete case analysis. The differences in sitting time observed for the medium and low levels were similar to the complete case analysis. Conclusions: Most intervention strategies were delivered to some extent across the clusters although there was large variation. Superior effects for sitting reduction were seen for those intervention groups who implemented and engaged with the most intervention components and had the highest level of cluster implementation and engagement. Trial Registration: ISRCTN11618007. Registered on 24 January 2018. https://www.isrctn.com/ISRCTNISRCTN11618007
- …