67 research outputs found

    Farm-Scale Cost of Producing Perennial Energy Cane as a Biofuel Feedstock

    Get PDF
    Energy cane varieties are high-fiber sugarcane clones which represent a promising feedstock in the production of alternative biofuels and biobased products. This study explored the crop establishment and whole farm production costs of growing energy cane as a biofuel feedstock in the southeastern USA. More specifically, total production costs on a feedstock dry matter biomass basis were estimated for five perennial energy cane varieties over alternative crop cycle lengths. Variable production costs for energy cane production were estimated to be in the 63to63 to 76 Mg-1 range of biomass dry matter for crop cycles through harvest of fourth through sixth stubble crops. Total production costs, including charges for fixed equipment costs, general farm overhead, and land rent, were estimated to range between 105and105 and 127 Mg-1 of feedstock biomass dry matter material. © 2013 The Author(s)

    Feedstock Crop Production Costs and Biofuel Feedstock Input Costs Associated with the Production of Energy Cane and Sweet Sorghum in the Southeastern USA

    Get PDF
    © 2017, The Author(s). Concentration of biofuel feedstock crop production in specific regions of the USA is dependent on the relative comparative advantage of production in a specific region based on several agronomic and economic factors. For the southeastern region of the USA, energy cane and sweet sorghum have been identified as two feedstock crops with the greatest potential for further development of production. This study utilized field trial data from yield studies in Louisiana to develop estimates of feedstock crop production costs and biofuel feedstock input costs for these two crops. Results indicated that feedstock production costs on a harvest yield basis, as well as the related dry matter basis, were heavily dependent on yield level. Economic research from this study indicated that energy cane had a slight cost advantage compared with sweet sorghum, although production of sorghum in certain periods during the growing season was very cost competitive with energy cane

    Biomass Production of Herbaceous Energy Crops in the United States: Field Trial Results and Yield Potential Maps from the Multiyear Regional Feedstock Partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small‐scale and short‐term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long‐term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field‐scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm‐scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM‐ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population

    Get PDF
    Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In this computational study, we explored the CD8+ epitope diversity estimated in 27 of the most common HLA-A and HLA-B alleles, representing most of the United States population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100, AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1, BQ.1.1, XBB.1, XBB.1.5)] in analyzed MHC class I alleles revealed that SARS-CoV-2 CD8+ epitope conservation was estimated at 87.6%–96.5% in spike (S), 92.5%–99.6% in membrane (M), and 94.6%–99% in nucleocapsid (N). As the virus mutated, an increasing proportion of S epitopes experienced reduced predicted binding affinity: 70% of Omicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as compared with ~3% and ~15% in the earlier strains Delta AY.100–AY.44 and Omicron BA.1–BA.5, respectively. Additionally, we identified several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to determining the clinical severity of acute COVID-19. Achieving long-term COVID-19 immunity will require an understanding of the relationship between T cells, SARS-CoV-2 variants, and host MHC class I genetics. This project is one of the first to explore the SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United States population

    Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    A description of a knowledge broker role implemented as part of a randomized controlled trial evaluating three knowledge translation strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A knowledge broker (KB) is a popular knowledge translation and exchange (KTE) strategy emerging in Canada to promote interaction between researchers and end users, as well as to develop capacity for evidence-informed decision making. A KB provides a link between research producers and end users by developing a mutual understanding of goals and cultures, collaborates with end users to identify issues and problems for which solutions are required, and facilitates the identification, access, assessment, interpretation, and translation of research evidence into local policy and practice. Knowledge-brokering can be carried out by individuals, groups and/or organizations, as well as entire countries. In each case, the KB is linked with a group of end users and focuses on promoting the integration of the best available evidence into policy and practice-related decisions.</p> <p>Methods</p> <p>A KB intervention comprised one of three KTE interventions evaluated in a randomized controlled trial.</p> <p>Results</p> <p>KB activities were classified into the following categories: initial and ongoing needs assessments; scanning the horizon; knowledge management; KTE; network development, maintenance, and facilitation; facilitation of individual capacity development in evidence informed decision making; and g) facilitation of and support for organizational change.</p> <p>Conclusion</p> <p>As the KB role developed during this study, central themes that emerged as particularly important included relationship development, ongoing support, customized approaches, and opportunities for individual and organizational capacity development. The novelty of the KB role in public health provides a unique opportunity to assess the need for and reaction to the role and its associated activities. Future research should include studies to evaluate the effectiveness of KBs in different settings and among different health care professionals, and to explore the optimal preparation and training of KBs, as well as the identification of the personality characteristics most closely associated with KB effectiveness. Studies should also seek to better understand which combination of KB activities are associated with optimal evidence-informed decision making outcomes, and whether the combination changes in different settings and among different health care decision makers.</p

    Genomic Diversity and Introgression in O. sativa Reveal the Impact of Domestication and Breeding on the Rice Genome

    Get PDF
    The domestication of Asian rice (Oryza sativa) was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers.In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV) consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations.Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species

    Dental hygienists\u27 information seeking and computer application practices

    No full text
    114 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2005.Taking advantage of further development of the front-end platform and metabolic labeling quantitative strategy, top-down proteomics was employed to investigate the response of Saccharomyces cerevisiae towards anaerobiosis. Approximately 150 protein pairs were measured with 4 differential expressions determined including an aerobic and anaerobic isoform. Direct comparison of PTM patterns between two cell states was also accomplished through top-down proteomics.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD
    corecore