290 research outputs found

    Dilaton Gravity with a Non-minmally Coupled Scalar Field

    Get PDF
    We discuss the two-dimensional dilaton gravity with a scalar field as the source matter. The coupling between the gravity and the scalar, massless, field is presented in an unusual form. We work out two examples of these couplings and solutions with black-hole behaviour are discussed and compared with those found in the literature

    The complete spectrum of the area from recoupling theory in loop quantum gravity

    Full text link
    We compute the complete spectrum of the area operator in the loop representation of quantum gravity, using recoupling theory. This result extends previous derivations, which did not include the ``degenerate'' sector, and agrees with the recently computed spectrum of the connection-representation area operator.Comment: typos corrected in eqn.(21). Latex with IOP and epsf styles, 1 figure (eps postscript file), 12 pages. To appear in Class. Quantum Gra

    New Loop Representations for 2+1 Gravity

    Get PDF
    Since the gauge group underlying 2+1-dimensional general relativity is non-compact, certain difficulties arise in the passage from the connection to the loop representations. It is shown that these problems can be handled by appropriately choosing the measure that features in the definition of the loop transform. Thus, ``old-fashioned'' loop representations - based on ordinary loops - do exist. In the case when the spatial topology is that of a two-torus, these can be constructed explicitly; {\it all} quantum states can be represented as functions of (homotopy classes of) loops and the scalar product and the action of the basic observables can be given directly in terms of loops.Comment: 28pp, 1 figure (postscript, compressed and uuencoded), TeX, Pennsylvania State University, CGPG-94/5-

    Constructing local bulk observables in interacting AdS/CFT

    Full text link
    Local operators in the bulk of AdS can be represented as smeared operators in the dual CFT. We show how to construct these bulk observables by requiring that the bulk operators commute at spacelike separation. This extends our previous work by taking interactions into account. Large-N factorization plays a key role in the construction. We show diagrammatically how this procedure is related to bulk Feynman diagrams.Comment: 41 pages, LaTeX. v2: reference correcte

    The GRAVITY fringe tracker: correlation between optical path residuals and atmospheric parameters

    Full text link
    After the first year of observations with the GRAVITY fringe tracker, we compute correlations between the optical path residuals and atmospheric and astronomical parameters. The median residuals of the optical path residuals are 180 nm on the ATs and 270 nm on the UTs. The residuals are uncorrelated with the target magnitudes for Kmag below 5.5 on ATs (9 on UTs). The correlation with the coherence time is however extremely clear, with a drop-off in fringe tracking performance below 3 ms.Comment: submitted to SPIE Astronomical Telescopes & Instrumentation 201

    Quantum Spin Dynamics (QSD) II

    Get PDF
    We continue here the analysis of the previous paper of the Wheeler-DeWitt constraint operator for four-dimensional, Lorentzian, non-perturbative, canonical vacuum quantum gravity in the continuum. In this paper we derive the complete kernel, as well as a physical inner product on it, for a non-symmetric version of the Wheeler-DeWitt operator. We then define a symmetric version of the Wheeler-DeWitt operator. For the Euclidean Wheeler-DeWitt operator as well as for the generator of the Wick transform from the Euclidean to the Lorentzian regime we prove existence of self-adjoint extensions and based on these we present a method of proof of self-adjoint extensions for the Lorentzian operator. Finally we comment on the status of the Wick rotation transform in the light of the present results.Comment: 27 pages, Latex, preceded by a companion paper before this on

    QSD IV : 2+1 Euclidean Quantum Gravity as a model to test 3+1 Lorentzian Quantum Gravity

    Get PDF
    The quantization of Lorentzian or Euclidean 2+1 gravity by canonical methods is a well-studied problem. However, the constraints of 2+1 gravity are those of a topological field theory and therefore resemble very little those of the corresponding Lorentzian 3+1 constraints. In this paper we canonically quantize Euclidean 2+1 gravity for arbitrary genus of the spacelike hypersurface with new, classically equivalent constraints that maximally probe the Lorentzian 3+1 situation. We choose the signature to be Euclidean because this implies that the gauge group is, as in the 3+1 case, SU(2) rather than SU(1,1). We employ, and carry out to full completion, the new quantization method introduced in preceding papers of this series which resulted in a finite 3+1 Lorentzian quantum field theory for gravity. The space of solutions to all constraints turns out to be much larger than the one as obtained by traditional approaches, however, it is fully included. Thus, by suitable restriction of the solution space, we can recover all former results which gives confidence in the new quantization methods. The meaning of the remaining "spurious solutions" is discussed.Comment: 35p, LATE

    Chern-Simons theory and three-dimensional surfaces

    Get PDF
    There are two natural Chern-Simons theories associated with the embedding of a three-dimensional surface in Euclidean space; one is constructed using the induced metric connection -- it involves only the intrinsic geometry, the other is extrinsic and uses the connection associated with the gauging of normal rotations. As such, the two theories appear to describe very different aspects of the surface geometry. Remarkably, at a classical level, they are equivalent. In particular, it will be shown that their stress tensors differ only by a null contribution. Their Euler-Lagrange equations provide identical constraints on the normal curvature. A new identity for the Cotton tensor is associated with the triviality of the Chern-Simons theory for embedded hypersurfaces implied by this equivalence. The corresponding null surface stress capturing this information will be constructed explicitly.Comment: 10 pages, unnecessary details removed, typos fixed, references adde
    • …
    corecore