3 research outputs found

    Moving in the mesoscale: Understanding the mechanics of cytoskeletal molecular motors by combining mesoscale simulations with imaging

    No full text
    Rapid advances in experimental biophysical techniques are generating a wealth of information about the mechanical operation of the cellular cytoskeleton and its motors. However, each of these tools typically provides only a limited piece of a highly complex puzzle. There is a need to develop new computational tools that can integrate these data together into a central model. Here we discuss the experimental advances alongside the computational tools, and propose how these could be developed to successfully combine the emerging structural and dynamic experimental data on cytoskeletal motors. We consider examples of both single motors and arrays of motors within a biological cell

    New variants and in silico analyses in GRK1 associated Oguchi disease

    No full text
    Biallelic mutations in Gā€Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use inā€depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patientsā€™ genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structureā€based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how diseaseā€causing variants may impede protein function inā€silico

    New variants and in silico analyses in GRK1 associated Oguchi disease

    Get PDF
    Biallelic mutations in Gā€Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use inā€depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patientsā€™ genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structureā€based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how diseaseā€causing variants may impede protein function inā€silico
    corecore