32 research outputs found

    Class I genes have split from the MHC in the tammar wallaby

    No full text
    Genes within the Major Histocompatibility Complex (MHC) are critical to the immune response and immunoregulation. Comparative studies have revealed that the MHC has undergone many changes throughout evolution yet in tetrapods the three different classes of MHC genes have maintained linkage, suggesting that there may be some functional advantage obtained by maintaining this clustering of MHC genes. Here we present data showing that class II and III genes, the antigen processing gene TAP2, and MHC framework genes are found together in the tammar wallaby on chromosome 2. Surprisingly class I loci were not found on chromosome 2 but were mapped to ten different locations spread across six chromosomes. This distribution of class I loci in the wallaby on nearly all autosomes is not a characteristic of all marsupials and may be a relatively recent phenomenon. It highlights the need for the inclusion of more than one marsupial species in comparative studies and raises questions regarding the functional significance of the clustering of MHC gene

    Physical mapping of the elephant X chromosome: Conservation of gene order over 105 million years

    No full text
    All therian mammals (eutherians and marsupials) have an XX female/XY male sex chromosome system or some variant of it. The X and Y evolved from a homologous pair of autosomes over the 166 million years since therian mammals diverged from monotremes. Comparing the sex chromosomes of eutherians and marsupials defined an ancient X conserved region that is shared between species of these mammalian clades. However, the eutherian X (and the Y) was augmented by a recent addition (XAR) that is autosomal in marsupials. XAR is part of the X in primates, rodents, and artiodactyls (which belong to the eutherian clade Boreoeutheria), but it is uncertain whether XAR is part of the X chromosome in more distantly related eutherian mammals. Here we report on the gene content and order on the X of the elephant (Loxodonta africana)-a representative of Afrotheria, a basal endemic clade of African mammals-and compare these findings to those of other documented eutherian species. A total of 17 genes were mapped to the elephant X chromosome. Our results support the hypothesis that the eutherian X and Y chromosomes were augmented by the addition of autosomal material prior to eutherian radiation. Not only does the elephant X bear the same suite of genes as other eutherian X chromosomes, but gene order appears to have been maintained across 105 million years of evolution, perhaps reflecting strong constraints posed by the eutherian X inactivation system. © 2009 Springer Science+Business Media B.V.Articl
    corecore