11,219 research outputs found

    A Naturalist\u27s Guide to Ontario (book review)

    Get PDF
    A NATURALIST\u27S GUIDE TO ONTARIO. W. W. Judd and J. M. Speirs (eds.). Published for the Federation of Ontario Naturalists by University of Toronto Press. 210 pp., 6 1/8 x 9 1/4 in. 1964. Price: cloth, 4.95;paper,4.95; paper, 1.95

    Glass-bead peen plating

    Get PDF
    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil

    A vectorized code for calculating laminar and turbulent hypersonic flows about blunt axisymmetric bodies at zero and small angles of attack

    Get PDF
    A user's guide is provided for a computer code which calculates the laminar and turbulent hypersonic flows about blunt axisymmetric bodies, such as spherically blunted cones, hyperboloids, etc., at zero and small angles of attack. The code is written in STAR FORTRAN language for the CDC-STAR-100 computer. Time-dependent, viscous-shock-layer-type equations are used to describe the flow field. These equations are solved by an explicit, two-step, time asymptotic, finite-difference method. For the turbulent flow, a two-layer, eddy-viscosity model is used. The code provides complete flow-field properties including shock location, surface pressure distribution, surface heating rates, and skin-friction coefficients. This report contains descriptions of the input and output, the listing of the program, and a sample flow-field solution

    Effect of nose bluntness and afterbody shape on aerodynamic characteristics of a monoplanar missile concept with bodies of circular and elliptical cross sections at a Mach number of 2.50

    Get PDF
    The tests were performed at a Mach number of 2.50 and at angles of attack from about -4 deg to 32 deg. The results indicate that increasing nose bluntness increases zero lift drag and decreases both the maximum lift-drag ratio and the level of directional stability. The center of pressure generally moves forward with increasing nose size; however, small nose radii on the modified elliptical configurations move the center of pressure rearward. The circular bodied configurations exhibit the greatest longitudinal stability and the least directional stability. Concepts with the variable geometry afterbody contour display the most directional stability and the greatest zero lift drag

    Repair techniques for celion/LARC-160 graphite/polyimide composite structures

    Get PDF
    The large stiffness-to-weight and strength-to-weight ratios of graphite composite in combination with the 600 F structural capability of the polyimide matrix can reduce the total structure/TPS weight of reusable space vehicles by 20-30 percent. It is inevitable that with planned usage of GR/PI structural components, damage will occur either in the form of intrinsic flaw growth or mechanical damage. Research and development programs were initiated to develop repair processes and techniques specific to Celion/LARC-160 GR/PI structure with emphasis on highly loaded and lightly loaded compression critical structures for factory type repair. Repair processes include cocure and secondary bonding techniques applied under vacuum plus positive autoclave pressure. Viable repair designs and processes are discussed for flat laminates, honeycomb sandwich panels, and hat-stiffened skin-stringer panels. The repair methodology was verified through structural element compression tests at room temperature and 315 C (600 F)

    Stability and control characteristics at Mach numbers from 0.20 to 4.63 of a cruciform air-to-air missile with triangular canard controls and a trapezoidal wing

    Get PDF
    Investigations have been conducted in the Langley 8-foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel at Mach numbers from 0.20 to 4.63 to determine the stability and control characteristics of a cruciform air-to-air missile with triangular canard controls and a trapezoidal wing. The results indicate that canards are effective in producing pitching moment throughout most of the test angle-of-attack and Mach number range and that the variations of pitching moment with lift for trim conditions are relatively linear. There is a decrease in canard effectiveness with an increase in angle of attack up to about Mach 2.50 as evidenced by the beginning of coalescence of the pitching-moment curves. At a Mach number above 2.50, there is an increase in effectiveness at moderate to high angles of attack. Simulated launch straps have little effect on the lift and pitch characteristics but do cause an increase in drag, and this increase in drag induces a rolling moment at a zero roll attitude where the straps cause an asymmetric geometric shape. The canards are not suitable devices for roll control and, at some Mach numbers and roll attitudes, are not effective in producing pure yawing moments

    Graphite/Larc-160 technology demonstration segment test results

    Get PDF
    A structural test program was conducted on a Celion/LARC-160 graphite/polyimide technology demonstration segment (TDS) to verify the technology. The 137 x 152 cm (54 x 60 in.) TDS simulates a full-scale section of the orbiter composite body flap design incorporating three ribs and extending from the forward cove back to the rear spar. The TDS was successfully subjected to mechanical loads and thermal environments (-170 to 316 C) simulating 100 shuttle orbiter missions. Successful completion of the test program verified the design, analysis, and fabrication methodology for bonded Gr/PI honeycomb sandwich structure and demonstration that Gr/PI composite technology readiness is established

    Design and fabrication of the Mini-Brayton Recuperator (MBR)

    Get PDF
    Development of a recuperator for a 2.0 kW closed Brayton space power system is described. The plate-fin heat exchanger is fabricated entirely from Hastelloy X and is designed for 10 years continuous operation at 1000 K (1300 F) with a Xenon-helium working fluid. Special design provisions assure uniform flow distribution, crucial for meeting 0.975 temperature effectiveness. Low-cycle fatigue, resulting from repeated startup and shutdown cycles, was identified as the most critical structural design problem. It is predicted that the unit has a minimum fatigue life of 220 cycles. This is in excess of the BIPS requirement of 100 cycles. Heat transfer performance and thermal cycle testing with air, using a prototype unit, verified that all design objectives can be met
    corecore